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FOREWORD 

Understanding and interpreting oceanographic observations 

depend on a knowledge of the basic physics governing water motion. 

Water waves, from the shortest ripples that roughen the sea 

surface, increasing wind drag, to the tides of global dimensions, 

with their associated currents affecting the entire ocean volume, 

influence the oceanic and nearshore environment. ESSA has a wide 

variety of interests in fluid dynamics and especially in water waves. 

Its interest in hydrodynamics extends from the most basic scientific 

aspects, which may be of academic interest only, to engineering 

applications, which put knowledge into use for the good of mankind. 
, , . . 

Dr. Le Mehaute does much to br1dge the gap between ngorous 

but abstract theoretical works, which are often difficult to trans

late into useable applications, and pure engineering approaches to 

hydrodynamics, which do not go much beyond a presentation of 

results and so contribute little to one's basic understanding. 

Gaylord R. Miller 
Director 
Joint Tsunami Research Effort 
Pacific Oceanographic Laboratories 
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PREFACE 

This book is the first part of lecture notes that the author has 

presented as Special Lecturer in Graduate Studies of the Civil Engineer-

ing Department at Queen's University, Kingston, Ontario in 1959-60. 

These lecture notes have now been revised for publication. 

The primary purpose of this book is to present the foundations 

and the essential aspects of the theoretical approach to hydrodynamics 

and water waves at a relatively simple level. It is hoped that it can 

be of help to hydraulic and coastal engineers who want to learn, or 

revise, the theoretical aspects of their profession. 

This book can also be considered as the text for a course in 

applied mathematics as well as the fundamentals of hydraulic and 

coastal engineering. 

In the first case, the students will find how to make use of their 

< 
mathematical equipment in a field of physics particularly suitable to 

mathematical treatments. Since they may have some difficulty in 

representing a physical phenomenon by a mathematical model, a 

great emphasis has been given in this book to the physical concepts 

at the foundation of hydrodynamics. In the case of students with an 

undergraduate training in civil engineering, the difficulty may be of 

a mathematical nature. Their first contact with hydraulics has been 

on an essentially practical basis. They may be discouraged in attempt-

ing the study of such books as Hydrodynamics by Lamb, which remains 

the bible of hydrodynamicists. Hence the mathematical difficulties 
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have been introduced slowly and progressively. Also, the emphasis 

on the physical approaches has made it possible to avoid mathematical 

abstractions so that a concrete support may be given to equations. 

Finally, the author has tried to make this book self-contained 

in the sense that a practicing engineer who wants to improve his 

theoretical background can study hydrodynamics by himself without 

fo.l.lowing lectures. Too often articles in engineering journals present 

some discouraging aspects to practicing engineers and the n1ost valu

able messages are lost or cannot reach a wide audience with the ex

ception of a few specialists. It is felt that the learning of some basic 

theories will help hydraulic engineers to keep abreast of and partici

pate in new developments proposed by theorists. 

Considering that a good assimilation of the basis is essential 

before further study, great care has been taken to develop a clear 

understanding, both mathematically and physically, of the fundamental 

concepts of theoretical hydraulics. In particular, great attention has 

been given to emphasizing the physical meaning of all the rnathenratical 

terms. The introduction of mathematical simplifications and assump

tions, often based on physical considerations, has also been developed 

by examples. The mathematical difficulties have been cleared up by 

introducing them progressively and by developing all the intermediate 

calculations. Also, all the abstract concepts of theoretical hydraulics 

have been explained as concretely as possible by use of examples. It 

will appear that the first chapter is the easiest to understand, and it is 

assumed that the mathematical background increases as the student 
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progresses toward the end of the book. 

Since in hydraulics the various subjects often appear as a suc

cession of different mathematical recipes rather than as a unique and 

logical subject, the succession of the various chapters have been 

chosen in order to build up a structure as logical and as deductive as 

possible. 

Part I (Volume I) deals with the establishment of the fundamental 

differential equations governing the flow motion in all possible cases. 

The possible approximations are also indicated. Then Part II (Volume I) 

deals with the method of integrations and the mathematical treatments 

of these equations. Integrations of general interest, and integrations 

in some typical particular cases are presented. Finally, Part III 

(Volume II) is devoted to free surface flow motion and water wave 

theories, as one of the most important topics of hydrodynamics. 

It is pointed out that the treatment of motion of compressible fluid 

has been judged beyond the scope of this book, with a few exceptions. 

Also, all the calculations are presented in a Cartesian (or cylindrical) 

system of coordinates. Vectorial and tensorial operations have been 

avoided in order to minimize the necessary mathematical background. 

However, vectorial and tensorial notations are slowly introduced for 

sake of recognition in the literature. Finally, capillary effects are 

not dealt with in this book. 

It is hoped that this book will give to students gifted in mathematics. 

the taste of applying their capabilities to the study of fluid motion and dy

namical oceanography. It is hoped also that it will instill in engineering 
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students the desire for further study in hydrodynamics and mathematics. 

It is also hoped that the book will be of great help to hydraulic and 

coastal engineers and physical oceanographers who want to reinforce 

their knowledge of the fundamentals. 
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INTRODUCTION 

Hydrodynamics is the science which deals with the motion of 

liquid in the macroscopic sense. It is essentially a field which is re

garded as applied mathematics because it deals with the mathematical 

treatments of basic equations for a fluid continuum obtained on a purely 

Newtonian basis. It is also the foundation of hydraulics which, as an art, 

has to compromise with the rigorous mathematical treatments because of non-

linear effects, inherent instability, turbulence, and the complexity of 

"boundary conditions" encountered in engineering practice. 

The. purpose of this introduction will be to give to the beginning 

hydrodynamicist a summary of what to expect in that book. 

Indeed, the first time reader should keep the final objective constantly 

in mind. He has to be aware that the road may be long, but each step 

leads closer to the final goal. 

Iri r;ibst cases, a problem in hydrodynamics consists in deter

mining the flow pattern (particle velocity) and the forces (pressure). 

The first step consists in determining the boundary conditions, i.e., in 

determining the limit within which the flow is going to take place. The 

two unknowns (velocity and pressure or free surface elevation) require 

two equations. The essential purpose of the first part of this book is 

the establishment of these two equations in all the possible cases: they 

are the continuity relationship and the momentum equation. 

The continuity relationship simply expresses the conservation of 

matter. The establishment of the momentum equation is more complex. 
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Each motion of elementary particle of fluid gives .rise to inertial forces 

which equal the applied forces. A deep analysis of the elementary motion 

of fluid particle is presented. It is shown how the assumption of irrotationality 

simplifies considerably the research of a theoretical solution. The inertial 

forces corresponding to each kind of elementary motion are established. 

Then the mathematical expressions for the forces applied to an elementary 

fluid particle are presented. They are the gravity, the pressure, and the 

friction forces (capillary forces are not considered in this book). The equal

ity between these inertial forces and the applied forces gives the momentum 

equation, so called in this case the Navier Stokes equation, although this 

name also applies for the more general case of compressible fluid with 

additional terms. It is seen how this Navier Stokes equation is transformed 

in the case of a turbulent flow for the average motion. Also, it is seen how 

the Navier Stokes equation is transformed and simplified for the study of 

flow through porous medium. 

AU the basic equations of the motion are now established. Part II 

of the book is essentially devoted to presenting some basic mathematical 

treatments of these equations and to establish the most fundamental 

relationships of hydrodynamics. The momentum equation, integrated 

along a streamline or in the case of an irrotational motion, leads to the 

well-known Bernoulli equation exactly. 

It is shown that the case of steady two-dimensional irrotational 

motion is particularly suitable for exact integration. Some basic examples 

of flow patterns are obtained by satisfying the continuity principle and 

the assumption of irrotationality only. Then the pressure is obtained 

afterward by a mere application of the Bernoulli equation where the 

particle velocity is known. 
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It is shown according to which approximations the Bernoulli equation 

can be applied to a stream tube (a pipe) where the flow motion is rotational 

and turbulent. It is shown also how the integration of the Navier Stokes 

equation over a finite mass of fluid leads to the momentum theorem. In 

the case of steady flow, the momentum theorem is a master key in 

hydraulics because it can be applied without taking into account the 

characteristics of the flow within the limit of the considered mass. This 

fortunate situation makes the integration process extremely simple and 

powerful. 

This part will be incomplete without~ analyzing the flow motion 

near the boundary. There the friction force is important, the flow is 

rotational, and a deep analysis of the flow pattern requires inte-

gration of the Navier Stokes equation in a domain where the previous con

siderations and simplifications do not apply. 

A Newtonian or fully deterministic approach is rapidly limited. 

The hydrodynamicist can only count upon experimental results for sub

stantiating the theory. 

In Part Ill, the basic theorems and mathematical methods which 

have been described in Part II are applied to a special and very important 

family of flow motions. They are the steady and unsteady free surface 

flows. 

Part III of this book deals with the hydrodynamic aspects of the 

so-called "water waves" and open channel hydraulics. A survey of the 

different kinds of water waves and definition is given first. Then an 

analysis of the two essential families of water waves, namely the small 
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wave theory and the long wave theory, is given. The limit of applicability 

of these various theories is presented. 

Finally, a modern treatise on water waves will not be complete 

if some elementary motions on wave spectrum are not included. This is 

the purpose of the last section of this book. 

Now that the reader has been quickly briefed, it is time to make 

a start by presenting the fundamental concepts of hydrodynamics. 
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PART ONE 

ESTABLISHMENT OF THE BASIC EQUATIONS 

WHICH GOVERN FLOW MOTION 



CHAPTER I 

THE BASIC CONCEPTS AND PRINCIPLES 

OF THEORETICAL HYDRAULICS 

I-1 BASIC CONCEPTS OF THEORETICAL HYDRAULICS 

I-1. l DEFINITION OF AN ELEMENTARY PARTICLE OF FLUID 

Studies of theoretical fluid mechanics are based on the 

concept of an elementary mass or particle of fluid. This particle has 

no well defined existence. It may even be considered as a "corpus 

alienum, " a foreign matter in the mechanics of a continuum. But it is 

a concrete support in order to understand the physical meaning of 

differential equations governing the flow motion. 

Just as the fundamental concepts of the theoretical mechanics 

of solid matter are based on the mechanics of a so-called "material 

point", the basis of theoretical fluid mechanics rests on the mechanics 

of an elementary mass of fluid. Such an elementary mass of fluid, in 

common with the material point in the kinematics of solid body, is as-

sumed to be either infinitely small or small enough to consider that all 

-parts of this element have the same velocity of translation V and in 

general the same density p • 
I 

This elementary fluid particle is assumed to be homogeneous, ~I 
isotropic and continuous in the macroscopic sense. No account is taken 

of the molecular pattern nor of the molecular and Brownian motions within 
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the particle -- a subject dealt with in the kinetic theory of fluids. 

I-1. 2 THE TWO PARTS OF THEORETICAL HYDRAULICS 

The laws of mechanics of a solid body system (a rotating 

disk, for example) are obtained by the integration of the laws of me-

chanics for a "material point" with respect to the area or the volume 

of the system under consideration. 

Similarly, the laws of fluid mechanics used in engineering 

practice are obtained by integration -- exact or approximate -- of the 

laws governing the behavior of a fluid particle along a line or throughout 

an area or a volume. Hence, studies in hydrodynamics may be divided 

into two different parts, 

I-1. 2. 1 The first part consists of establishing the general differ-

ential equations which govern the motion of an elementary particle of 

fluid. The fluid may be assumed either perfect (without friction forces) 

or actual. The flow may be either laminar or turbulent. Also included 

in this part is the study and appreciation of the physical significance of 

the terms constituting the basic equations. 

I-1.2.2 The second step involves the study of different mathemati-

cal treatments and integration of these basic differential equations. 

Practical general relationships, such as the well-known Bernoulli 

equation, may thereby be deduced. The differential equations may also 

be integrated for a number of particular simple cases, but the solutions 

are valid only for these cases. 

/ 

3 



I-1. 3 RELATIONS BETWEEN FLUID PARTICLES 

In a solid material, points in a system (on a disk, for 

example) do not change their relative position (except for elastic effects 

which have a law governing their behavior). 

On the other hand, fluid particles may be deformed and each 

particle may have a particular motion which differs quite markedly from 

the motion of other particles. The relations between fluid particles are 

governed by pressure forces, friction forces, and capillary forces. 

However, in this book capillary effects will not be considered. 

I-1. 4 BASIC ASSUMPTION ON FRICTION FORCES 

In theoretical hydrodynamics, the friction force per unit 

area or shear stress T is assumed to be either zero, in the case of 

an "ideal" or perfect fluid, or proportional to a coefficient of viscosity JJ.. 

The shear stress T is a scalar. The set of shear stresses at a 

point constitutes a tensor. The significance of this statement is developed 

in Chapter V. It is now sufficient to know that in the case of unidirectional 

flow the shearing stress along a plane parallel to the flow direction is: 

T = dV 
}J.

dn 

where n is a distance measured perpendicularly to the velocity vector. 

Thus hydrodynamics is primarily concerned with "Newtonian 

fluid" defined by the fact that its viscous stress tensor depends linearly, 

isotropically, and covariantly on the rate of strain or derivatives of velocity 

components. It does not deal with "plastic" fluids where the coefficient JJ. 
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has to be replaced by a function of the intensity or duration of the shear, 

I-2 STREAMLINE, PATH, STREAKLINE AND STREAM TUBE 

I-2. 1 NOTATION 

Consider, in a Cartesian rectangular system of coordinates 

:>X, OY, OZ, the point A(x, y, z). (See Figure I-1.) The edges of an 

infinitely small fluid particle A are dx, dy, dz • Its volume is 

y 

z 

I 
I 

I 
I w 

I 
I 

K- I 
I 

I f--
I I 
I I 
I I 
I I 
I I 
I I 
I 
I 
I v 
I 

FIGURE I-1 

NOTATION 

u X 
I I I I I 

II I I 
I I 
I I 
II 
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dx dy dz and its weight W dx dy dz or P g dx dy dz. W is the specific 

weight and g the gravitational acceleration. 

The pressure at point A is p. p is a pseudo-scalar 

quantity which is completely specified by its magnitude and the condition 

that it is always exerted perpendicular to the considered surface (see Section V -3. 1). 

p is a function of the space coordinates of A (x, y, z) and time t; i.e., 

p:::: f(x, y, z, t). The corresponding force is a vector quantity, speci-

fied by its intensity and its direction. Its direction is normal to the 

area on which the pressure is exerted. The gradient of p (g--r;d p), or 

its variation with respect to space, is also a vector quantity. The com-- . ponents of grad p along the t.hree coord1nate axes OX, OY, OZ, are 

given by the variation of p with respect to x, y, z respectively, i.e., 

ap ap ap 
8x'8y'az· 

The velocity of fluid particles at A is V. The compo--nents of V along the three coordinate axes OX, OY, OZ, are u, v, 

and w respectively, such that V =;; +;. + ;, Since the three-axis 

system of reference is rectangular, the magnitude of the velocity is 

given by v2 = u
2 + v 2 + w 2

. V is a scalar quantity defined by its 

intensity only like the presSure p whereas V is a vector quantity 

specified by its direction and intensity, i.e., a tensor of rank one. 

V and its components u, v, and w are also functions of space coor-

dinates of A(x, y, z) and time t: V(x, y, z, t). 

l-2. 2 DISPLACEMENTS OF A FLUID PARTICLE 

The displacement dS of a fluid particle is defined by the 
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vectorial equality that is valid both in intensity and in direction: 

- -dS = V dt , which may be written more specifically in terms of the 

displacements in each of the three Cartesian coordinate directions as 

follows: 

I-2. 3 STREAMLINE 

dx = u dt 

dy = v dt 

dz = w dt 

A streamline is defined as a line which is tangential at 

every point to the velocity vector at a given time t . 
0 

Streamlines may be obtained by photographing with a short 

exposure a number of bright particles in a random suspension in the 

fluid (Figure I-2). Every particle photographs as a small straight seg-

ment defining a velocity vector. Each line tangential to these small 

segments is a streamline. 

VEL CCI TY VECTOR _., 

/ 

I / 
I t- / 

I I / 

FIGURE I-2 

/ 

/ 

/ 

STREAMLINES OBTAINED BY SHORT EXPOSURE 

PHOTOGRAPHY OF VARIOUS PARTICLES IN A 

RANDOM DISTRIBUTION 
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The equations dx = u dt, dy = v dt, and dz = w dt, when 

expressed in a more significant form at time t as follows: 
0 

dx 
u(x, y, z, t ) 

0 

= dy 
v(x, y, z, t ) 

0 
= dz 

w(x, y, z, t ) 
0 

yield the mathematical definition of a streamline. These equalities 

express the fact that the velocity vector V (u, v, w) is tangential to 

the displacement of the particle dS (dx, dy, dz) at time t as is 
0 

shown for a two dimensional motion by Figure I- 3 where dx/u = dy /v, 

or v dx - u dy = 0. 

y 

-v 
v 

OL-----~~dx~~~------~x 

u 

FIGURE I-3 

DEFINITION OF A STREAMLINE IN 

A TWO DIMENSIONAL MOTION 

Streamlines do not cross, except at point of theoretically 

infinite velocity (see Figures XI- 6 and XI-7) and at stagnation and 

separation points of a body where the velocity is zero (see Chapter XIV). 
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Fixed solid boundaries and steady free surface are stream

lines. Moving boundaries and unsteady free surface are not streamlines. 

Some cases of two-dimensional unsteady flow such as periodic gravity 

waves, or a moving body through a fluid sometimes can be transformed 

into a steady flow by adding a velocity compon nt equal to the wave or 

the body velocity. The flow patterns are then similar to the patterns 

which would be seen by an observer or a camera moving with the wave 

or at the body velocity. 

I- 2. 4 PATH 

The path of a fluid particle is defined by its position as a 

function of time. It may be determined by photographing a bright par

ticle with a long exposure. (Figure I-4) 

FIGURE I-4 

PATHS: OBTAINED BY LONG EXPOSURE 

PHOTOGRAPHY OF THE SAME 

PARTICLES 

9 



The path line is tangential to the streamline at a given time 

t
0

• However, the time has to be included as a variable for defining a 

path. Hence, the path lines are defined mathematically as: 

dx dy dz = dt u(x, y, z, t) = v(x, y, z, t) = w(x, y,_ z, t) 

I-2. 5 STREAKLINE 

A streakline is given by an instantaneous shot photographing 

a number of small bright particles in suspension which were introduced 

into the fluid at the same point at regular intervals of time. 

(Figure I-5) 

I-2. 6 STREAM TUBES 

An elementary flow channel bounded by an infinite number 

of streamlines on the locus of a closed curve is known as a stream tube. 

(Figure I- 6) 
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FIGURE I-5 

STREAKLINE OBTAINED BY INSTANTANEOUS PHOTOGRAPHY 

OF VARIOUS PARTICLES COMING FROM THE SAME POINT 

FIGURE I-6 

STREAM TUBE 
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I-2. 7 STEADY AND UNSTEADY FLOW 

Streamlines, paths, streaklines and stream tubes are the 

same in steady flow, which does not depend upon time. They are 

different in unsteady flow, that is flow changing with respect to time. 

Turbulent flow is always an unsteady flow; however, it will be seen that 

often the mean motion with respect to time of a turbulent flow may be 

considered as steady. Then streamlines, paths and streaklines of the 

IIlean rnotion are the sarne. {See Chapter VII) 

Figures I-7 and I-8 illustrate these definitions in some cases 

of unsteady motion. 

I-3 METHOD OF STUDY 

The study of the motion of a fluid can be done in two ways: 

the method of Lagrange and the method of Euler, 

I-3. 1 LAGRANGIAN METHOD 

.• .-'r: •..•. "'- ---.-

The Lagrangian method may be used to answer the .question: 

What occurs to a given particle of fluid as it moves along its own path? 

This method consists of following the fluid particles during 

the course of time and giving the paths, velocities and pressures ( and 

in the case of a compressible fluid, densities and temperature) in terms 

of the original position of the particles and the time elapsed since the 

particles occupied their original position. 

If the initial position of a given particle at time t is x , 
0 0 

z , a Lagrangian system of equations gives the position x, y, z 
0 

at the instant t as: 
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WAVE TRAVEL 

STREAMLINES _...L..___J 

FIGURE I-7 

PERIODICAL GRAVITY WAVES IN DEEP WATER 

WIND ... 
SMOKE 

PATHS 

CHIMNEY '--"--STREAMLINES 

FIGURE I-8 

SMOKE IN THE WIND 
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X = F 1 (xo' Yo' z 
o' t) 

y = F 2 (xo' yo' z 
o' t) 

z = F 3 (xo' Yo' z o' t) 

In practice this method is seldom used in hydrodynamics. 

One notable use of Lagrangian coordinates is in some theories inherent 

to periodical gravity waves. 

The velocity and acceleration components at point (x , y , z ) 
0 0 0 

are then obtained by a simple partial differentiation with respect to time, 

such that 

8 z I w =-
8 t 

xo' Yo' z o 

Similarly, the acceleration components are 

l-3. 2 EULERIAN METHOD 

The Eulerian method may be used to answer the guestioh: 

What occurs at a given point in a space occupied by a fluid in motion? 

This is the most frequent form of problem encountered in hydrodynamics. 

This method gives at a given point P (x, y, z) the velocity 

V (u, v, w) which is tangent to the streamline, and the pressure p 

(and in the case of a compressible fluid, density and temperature) as 

14 
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e u enan sys em o equations has the following functions of time t • Th E l · t f 

form: 

v = F (x, y, z, t) 

or 

u = f 
1 

(x, y, z, t) 

v = f2 (x, y, z, t} 

w = f3 (x, y, z, t) 

and 

p = F 
1 

(x, y, z, t} 

The acceleration components are now obtained by total differentiation of 

u, v, w with respect to t. This subject will be developed in Section 

IV-l. 3. 

I-3. 3 RELATIONSHIPS BETWEEN THE TWO APPROACHES 

It is possible to pass from ·a motion defined by a system of 

Lagrangian equations to the same motion defined by a system of Eulerian 

equations and vice-versa by the relationships: 



__ ]11_ t!lef()llo_wi!lg, _the_Eu!eri_a!l_ sy:ste_r.tl gf co_g_rclii1at5>_S_i s used. 

I-3. 4 AN EXAMPLE OF FLOW PATTERN 

Let us consider a Eulerian system of coordinates where the 

motion is represented by the velocity components (see I- 3. 2}: 

u = f
1 

(x, z, t} = 
dx 
dt 

= H k -mz cos (kt- mx} 2 e 

( ) d z H -mz . ( ) 
w = f 3 x, z, t = d t = - "7 k e s 1n k t - m x 

The equations for the streamlines are obtained from the differential 

equation (see I-2. 3} 

i.e. ' 

or 

i. e. , 

dx 
u (x, z, t ) 

0 

= 

dx 

dz 
w (x, z, t ) 

0 

k H e-mz cos (kt - mx} 
2 0 

= 

d z = - tan (kt - mx} dx 
0 

dz 

k H -mz sin (kt - mx} - 2 e o 

after integration and taking t = 0, for example, it is found that 
0 

mz 
e cos mx = constant 
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It can be verified by varying the value of the constant that the streamlines 

formed a general pattern a~ illustrated in Figure I-7. 

The paths (or particle orbits) are defined by the differential 

equation (see I-2. 4): 

dx dz = dt 

where t is now variable, i.e. , 

dx = kH 
2 

-mz 
e cos(kt-mx) dt 

and a similar equation for z . Then, the expressions for x = F 1 (x , z , t) 
0 0 

and z = F
3 

(x , z , t) may be obtained by integration. In this particular 
0 0 

case (linear theory), it is assumed that x - x and z - z remain small, 
0 0 

in such a way that x and z can be considered as the coordinates of 
0 0 

the particle when the fluid is at rest. Then, squaring (x - x ) and ( z - z ) 
0 0 

and adding in order to eliminate t, one finally obtains: 

2 2 -- [-z-H e-mzo] 2 (x - x ) + (z - z ) 
0 0 

The equation of circle of radius ~ e-mz is recognized. It is seen that 

the paths are circular and the radius decreases rapidly with the depth 

z . 
0 
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I-4 BASIC EQUATIONS 

I-4. 1 THE UNKNOWNS IN FLUID MECHANICS PROBLEMS 

In the Eulerian system of coordinates, the motions are com-

~ 

pletely known at a given point x, y, z if one is able to express V and p 

~ 

as functions of space and time: V = f (x, y, z, t) and p = F (x, y, z, t). 

Hence, to solve problems in hydrodynamics two equations are 
~ 

necessary, one of them being vectorial. If V is expressed by u, v, and 

w, four scalar or ordinary equations are necessary. 

In free surface flow problems, the free surface elevation 

TJ(x, y, z, t) around the still water level, or the water depth h(x, y, z, t), 

is also unknown. However, in that case the pressure p is known and 

equal to the atmospheric pressure. 

In the case of gases, two more unknowns need to be con-

sidered, namely the density p and the absolute temperature T. Hence, 

to solve problems in the most general cases of fluid mechanics, four 

equations are necessary, one of them being vectorial, or six ordinary 
~ 

equations, if V is expressed by u, v, w. 

In hydraulics, the basic equations are given by the physical 

principles of continuity and conservation of momentum, In the case of 

compressible fluid, the equation of state and the principle of the conser-

vation of energy must be added. 

The reduction of a problem to the solution of two (or four} 
"I 

unknown variables does not occur for trivial reasons but as a result of 

several important arguments and assumptions. So a number of phenome- • 
nological functions are assumed to be known. For example, it is assumed 
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that the fluid is viscous and Newtonian, i.e., the stress tensor is sym-

metric. The fluid obeys the law of conduction of Fourier. Also, a num-

ber of coefficients such as heat conductivity, specific heat, viscosity, 

are supposed to be known functions of the other unknown variables, such 

as p and T. 

I-4. 2 PRINCIPLE OF CONTINUITY 

The continuity principle expresses the conservation of mat-

ter; i.e., fluid matter in a given space cannot be created or destroyed. 

In the case of an incompressible homogeneous fluid, the principle of 

continuity is expressed by the conservation of volume, except in the 

special case of cavitation where partial voids appear. 

The continuity principle gives a relationship between the 

velocity V, the density p, and the space coordinates and time. If p 

is constant (in the case of an incompressible fluid), it gives a relation

ship between the components of V which are u, v, w and the coordin-

ates, which are x, y, z. 

-It will be seen that V may be found in some cases of flow 

under pressure, independent of the absolute value for p, from the 

-urinciple of continuity alone, but p will always be a function of V 

except at the free surface. 
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I-4. 3 THE MOMENTUM PRINCIPLE 

The momentum principle expresses the relationship 

-between the applied forces F on a unit of volume of matter of density -
p and the inertia forces p 

dV 
d t of this unit of volume of matter in 

motion. The inertia forces are due to the natural tendency of bodies to 

resist any change in their motion. It is Newton's first law that "every 

body continues in its state of rest or uniform motion via a straight line 

unless it is compelled by an external force to change that state". The 

well-known Newtonian relationship is derived from his second law: "The 

rate of change of momentum is proportional to the applied force and 

-takes place in the direction in which the force acts 11
• F=m 

In fluid mechanics this equation takes particular forms which 

take into account the fact that the fluid particle may be deformed. These 

equations will be studied in detail. For an incompressible fluid, the 

integration of the momentum equation with respect to distance gives an 

equality of work and energy, expressing a form of the conservation of 

energy principle. 

-If V is expressed by u, v, w, the vectorial relationship 

of Newton's second law has to be expressed along the three axes, which 

du 
gives three equations: F x = p dt , F y 

dw 
p Cit, F x' F y' F 

z 

being the components of F along the three coordinates 1 axes respectively. 

I-4. 4 EQUATION OF STATE 

When considering a compressible fluid, one has to use two 

other equations with the above principles. These two equations are: the 

equation of state and the equation expressing the conservation of energy. 
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The equation of state expresses the relationship which 

always exists between pressure p , density p , and absolute temper-

ature T . For a perfect gas, this equation has the very simple form 

p = l or p 
= l 

pgR T m RT 

where R is the universal gas constant (R = 53. 3 ft/
0

R for air) . 

In a more general case of a real gas, it may take the form 

p = l + a ( T) p + i3 ( T) p 
2 + where a and i3 are functions 

pgRT 

of the absolute temperature T only. In the case of an incompressible 

fluid, the equation of state is simply p = constant. The temperature 

can then be treated as an independent variable having an (experimentally) 

I 
known significant influence on the coefficient of viscosity only. 

I-4. 5 PRINCIPLE OF CONSERVATION OF ENERGY 

The next equation expresses the conservation of the total 

energy (internal energy and mechanical energy). It is the first law of 

thermodynamics, 

The following equation is derived from this law in the partie-

ular case of an adiabatic flow-- that is, where no heat is added or re-

moved from the fluid mass: Pk = constant, where k is the adiabatic 
p 

constant defined as the ratio of the specific heat at constant pressure 

C to the specific heat at constant volume C 
p v 

In the case of isothermal flow at constant temperature which 

may necessitate the removal or addition of heat from/to the fluid mass, 

E = constant. 
p 

Inasmuch as hydrodynamic problems along are being considered 
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in this book, it is not necessary to further consider the equation of state 

and the equation which expresses the conservation of total energy. The 

density p will be supposed to be known and constant and the temperature 

T a variable without influence upon the phenomenon under consideration. 

However, it is evident that the dissipation of energy by viscous forces 

may create a (small) elevation of temperature which in turn modifies the 

characteristics of the fluid. In general, these effects are of secondary 

importance in hydrodynamics, and in particular, the coefficient of vis-

cosity !-' is considered as a known constant. 

I-5 BOUNDARY CONDITIONS 

It is evident that a general solution of the system of equations 

described above does not exist, but in many particular cases solutions 

can be found when the boundary conditions are specified. There are three 

main kinds of boundary conditions: 

l. At a free surface where the pressure is known and 

generally equal to atmospheric pressure. The cases of 

wind-water wave interaction, impulses on the free sur-

face, waves of density in a stratified liquid ... are special 

cases. 

2. At a solid boundary, since the fluid cannot pass through 

or escape from the boundary. 

3. At infinity when the motion tends to a known value. In 

such a case, the known conditions at infinity are con-

sidered as "boundary" conditions. 
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I- 5. 1 FREE SURFACE 

At the free surface the pressure is known, but the location 

of this free surface with respect to horizontal datum level is unknown in 

general. So two conditions must be specified: a dynamic condition, 

stating the value of pressure, and a kinematic condition, stating that 

the particle at the free surface remains at tne free surface. 

Since p is a constant at any time, the total variation of 

p (x, y, z, t) is zero; that is, 

dp = ~ ~ dx + ~ ~ dy + ~ ~ dz + ~ f dt = 0 

which could be written by dividing by dt : 

~ = ap + ~ dx 
dt TI 8x dt 

Introducing u· = dx 
dt 

ap dy 
+ ry d.t 

v = dy 
dt 

= 

w = 

0 

dz 
dt' (seei-2.2} 

the free surface limiting condition becomes in the most general case: 

This condition, involving a force, has to be introduced in 

the equation expressing the momentum principle. Hence V cannot 

be found independently from the momentum equation in the case of free 

surface flow. 

The kinematic condition will be developed in Section XVI-1. 4. 

For the time being, it is sufficient to know that if 

z = '1 (x, y, t) 

is the equation of the free surface, the kinematic condition is: 
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I-5.2 SOLID BOUNDARIES 

I-5. 2. 1 At fixed solid boundaries, the velocity is reduced to zero 

-because of the friction: V = 0 This condition has to be introduced 

in the continuity equation, and since a friction force is· involved, must 

also be introduced in the momentum equation. If the fluid is assumed 

to be perfect (or ideal), only the component perpendicular to the boun-

~ 

dary is zero, and the velocity V is tangential to the boundary. This 

condition has to be introduced primarily in the continuity relationship. 

It does not involve a force but a continuity statement: the fluid cannot 

pass through or escape from the boundary (unless there is cavitation). 

For instance, the boundary conditions in the case shown in 

Figure I-9 are: 

u = 0 for x = 0 and x = 

w = 0 for z = 0 

and p = constant for z = z 1 

More generally, if F(x, y, z) = constant is the equation 

of the boundary, the boundary condition expresses the ;fact that F and 

V are tangential at any point; i.e. 

8F + 8F 8F O 
uax vtry+waz-= 

I-5. 2. 2 At movable solid boundaries (wheel of turbine, wave paddle, 

etc.) the boundary condition expresses the fact that the fluid follows the 

boundary: the velocity component of the fluid perpendicular to the 

boundary is equal to the corresponding component of the boundary itself 
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FIGURE I-9 

UNIFORM FLOW IN A RECTANGULAR CHANNEL 
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FIGURE I-10 
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A PISTON WAVE PADDLE GIVES A MOVABLE BOUNDARY 

CONDITION 

25 



(the other component being zero for a real fluid). 

If F (x, y, z, t} = constant is the equation of the movable 

boundary, the boundary condition expresses the fact that the fluid remains 

at the boundary, i.e., 

8F 8F+ 8F 8F rr+ u"8X" vay-+waz- = 0 

I-5.3 INFINITY INTRODUCING A BOUNDARY CONDITION 

An infinite distance can give a boundary condition if the 

motion tends to a well-known value far from the studied space. For 

example, consider the diagram shown in Figure I-11. The motion 

is well known at infinity and can be written (as far as friction effect is 

negligible) V = constant for x tends to + <Xl 

FIGURE I-ll 

FLOW IN A PIPE PAST A DIAPHRAGM 

V = V 
0 

when x - + <Xl 
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It is well known that the motion of swell in deep water is 

limited to a zone near the free surface. Hence the periodic gravity 

-wave theory in infinite depth is based on the boundary condition V - 0 

when the distance from the free surface tends to infinity: 

(Figure I-12) 

z 

FIGURE I-12 

PERIODICAL GRAVITY WAVE IN 

INFINITE DEPTH 

V 0 when z - - <Xl 
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Consider a two-dimensional flow motion defined by the 

velocity components: 

u = A+ Bt 

v = c 

where A, B, and C are constant parameters. Demonstrate that the 

streamlines are straight lines and that the particle paths are parabolas. 

Answer: 

I-2 

Stream lines: 

Paths: 

c 
A+ B t 

0 

(x - x ) 
0 

A disk of radius R rolls on a horizontal plane at a constant 

angular velocity k. Demonstrate that the "streamlines" are circular 

and that the paths are trochoidal. 

Answer: 

At a point (r, e) within the circle 

u = k [R +r sin(kt+e)] 

w = krcos(kt+e) 
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I-3 

Streamlines, circles of radius R 
s 

R 
s 

2 2 l/2 = [R +r +2rRcos9] 

centered at the point where the circle touches the plane (t = 0) 
0 

Paths, taking 9 = 0, k (t - t ) = ¢ 
• 0 

r X_ x
0 

= R 

1 z - z = R + r cos <1> 
l 0 

+ r sin <1> 

which are the parametric equations of a trochoid. 

Consider a fixed cylinder in a uniform current of constant 

velocity. ii: wili be assumed that there is no separation. Sketch the 

streamlines, the paths, and the streaklines intuitively. Consider now 
'-• ' .... --

a cy#nde~ moving at constant velocity in still water, and sketch the 

streamlines, the paths, and the streaklines. Explain the differences 

between the two cases, considered as a steady and an unsteady motion 

respectively. 

I-4 A flow motion is defined in an Eulerian system of coordinates 

by the equations: 

u = A v = B 
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What is the expression of the same motion in a Lagrangian system? 

I-5 A two-dimensional flow motion (linear periodic gravity 

waves) is defined in a Lagrangian system of coordinates by the equations: 

X = 

z = 

X 
0 

z 
0 

cosh m (d + z
0

) 
+H 

2 ----s~1~-n~h~m~d~~ 

H sinh m (d + z
0

) 

+..,.,.. 
c. sinh md 

sin (kt- mx ) 
0 

cos (kt- mx ) 
0 

where H is the wave height; m, ( 
21f 

k, and d are constants m = L, L 

h 1 h k 21r T . ist ewave engt, =y, 1s the wave period, and d is the water 

depth. 

Answer: 

Paths: 
2 2 

Calculate (x - x ) , ( z - z ) and add. Solution: 
0 0 

(ellipse) 

where 

H 
cosh m (d + z ) 

A 
0 

= 7 sinh m d 

H 
sinh m (d + z ) 

B 
0 

= 7 sinh md 

Stream lines: 

K 
cos mx 

= sinhm(d+z) 
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l-6 Express mathematically the boundary conditions for any kind 

of flow motion taking place between the boundaries defined by the follow-

ing figure. A hinged paddle will be assumed to have a small sinusoidal 

motion of amplitude e at the free surface. 

.--
0 

c, 

~REE SURFA~ 
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I-7 Consider a two-dimensional body moving at velocity U in 

the negative X- direction. The nose of this body can be defined by 

a curve such that y = x 1
/
3

, and u and v are the components of velocity 

along the body. Establish the relationship between u, v, U and y. 

Then consider the case where the body is fixed and the fluid 

is moving at a velocity U. 

Answer: 

I-8 

Moving body in still fluid: 

F = y
3 

- (x + U t) = 0 

Boundary condition: 

2 
U- u + 3 vy = 0 

Fixed body, fluid moving at velocity U at infinity: 

1/3 
y- X = 0 

u = 3 x2/3 
v 

Consider a translatory '0'ave in a channel moving without 

deformation at a constant velocity V in the negative X-direction. At 

a given time t the wave profile is defined approximately by the relation

ship z = A x
1
/
2 

where A is a constant. Demonstrate that the free sur-

face velocity components u s and w s 

w 
s 

= (u 

32 
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Answer: 

l-9 

2 2 
F = z A (x - V t) = 0 

A2 
(V - u) w = 

2 z 

A sphere of radius R is moving at a velocity U (u , v , w ) 
s s s 

through a fluid at rest. Establish the equation for the boundary condition. 

Answer: 

2 2 2 2 
F = (x - u t) + ( y - v t) + ( z - w t) - R = 0 s s s 

( u - u ) (x - U t) + ( v - v ) ( y - v t) ( w - w ) ( z - w t) = 0 s s s s s s 
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CHAPTER II 

MOTIONS OF FLUID ELEMENT 

DEFINITION OF AN IRROTA TIONAL MOTION 

Il-l INTRODUCTION TO THE DIFFERENT KINDS OF MOTION 

The motion of the fluid elen.J.ents along their own 

paths is mathematically considered as the superimposition of 

different kinds of primary motions. The physical interpretation of 

these motions is given first by considering the simple case of a two-

dimensional fluid element, where all velocities are parallel to the 

OX axis (like a laminar flow between two parallel planes). 

Consider the square element ABCD at time t and the 

same element at time t + dt: A
1 

B
1 
c

1 
D

1
. (Figure Il-l). 

The velocity of A and D is u, and the velocity of B 

and C is u + du = u + au d 
a Y Y 

since AB = dy, and u in this 

case is a function of y only. 

To go from ABCD to Al B
1 

C
1 

D
1

, it is possible to con-

sider successively: 

(a) a translatory motion which gives A
1 

B
2

C
2

D
1

. The 

speed of translation is u. 

{b) a rotational motion which turns the diagonals A
1 

C
2 

and D
1 

B
2 

to A
1 
c

3 
and D

1 
B3' respectively. 
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u + ~ dy 
~y 

\ 

7• 
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I 

dy I 
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~dx 
X 

FIGURE Il-l 

ELEMENTARY ANALYSIS OF DIFFERENT KINDS OF MOTION 

OF A FLUID PARTICLE 

(c) a deformation which displaces c
3 

to c 1 and B 3 

If in the limit dt tends to zero, c 1 c 2 tends to zero; 

then the angle c
2
c

1
c

3 
tends to 45°. Hence: 

= 
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The rate of angular rotation is: 

dr 
dt = 

d 
dt { 

segment} 
radius 

d 
dt = d 

dt 

Introducing the value C 
2
c

3 
previously given, it is found that the rate 

of angular rotation is: 

dr 
dt = 

1 
2 

au 
i:Jy 

Similarly, the rate of deformation would be found to be equal to: 

II-2 

a 
at 

TRANSLATORY MOTION 

= 
1 
2 

au 
"BY 

Consider the particle A at the point A(x, y, z) at 

time t, the edges of which are parallel to the three axes OX, OY, 

OZ respectively (Figure II-2). When the particle moves so that the 

edges remain parallel to these axes, and maintain a constant length, 

it is a translatory motion only. This translation can be along a 

straight line or a curved line. 

If x, y, and z are the coordinates of A at time t, 

x + L:>.x, y + .0. y, z + .0. z, at time t + .0. t, the translatory 

motion is defined by the equations: 
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6x=u 6t 

6y=v 6t 

6 z = w 6 t 

t Hdt 

FIGURE Il-3 

AN EXAMPLE OF TRANSLATORY 

MOTION: UNIFORM FLOW 

or 

y 

dx = u dt 

dy = v dt 

dz = w dt 

z 

- -...... ' 
~ 

}--------------------x 

FIGURE Il-2 

TRANSLATORY MOTION 

The flow of particles along parallel and straight stream-

lines with a constant velocity (so called uniform flow) is a case of 

translatory motion only. (Figure ll-3). This kind of motion alone 

37 



is more theoretical than encountered in practice. 

The translatory motion may be defined more rigorously as 

the motion of the center of the particle instead of the motion of the 

corner of the particle. However, this change complicates slightly the 

development of figures and equations and gives, finally, the same result. 

Hence in the following discussion, translatory motion will be defined 

as the motion of a corner. 

In the following, the physical meanings and the correspond-

ing mathematical expressions are studied in the case of a two-dimensional 

motion at first, then they are generalized for a three-dimensional motion. 

II-3 DEFORMATION 

It is easier to explain this kind of motion with the aid of an 

example. Two kinds of deformation have to be distinguished: dilatational 

deformation and angular deformation. 

II- 3. l DILATATIONAL OR LINEAR DEFORMATION 

In a converging flow, the velocity has a tendency to increase 

along the paths of particles. Therefore, the velocities of the edges 

~ 

perpendicular to vector V (or to the streamlines) are not the same. 

(Figure II-4) The particle becomes longer and thinner. Assuming 

that the angles between the edges do not change, this is a case of 

dilatational or linear deformation superimposed on a translation. 
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FIGURE II-4 

DILATATIONAL DEFORMATION OF FLUID 

PARTICLE IN A CONVERGENT 

Now consider the two-dimensional particle ABCD of which 

the velocity of the edge AB is u, and the velocity of the edge CD is 

a u 
u + du = u + ax dx, since AD = dx (Figure Il-5). Similarly the 

av 
velocity of AD is v, and the velocity of BC is: v + "By dy 

y 

L. 
s' 

FIGURE II-5 

~v 
v +~ dy 

8 c 

----------· 
v 

u 

A 

I 
~d 
'oy ydt 

~-l ------., c' 

u 
~u 

t-dx 
~X 

I 
I 
I 
I 
I 

--
JD ----_J-...J o' 

1-- ~~ dxdt 

COMPONENTS OF DILATATIONAL DEFORMATION 
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The velocities of dilatational deformations are au dx 
ax 

After a time dt, BC becomes B'C', the length BB' 

av 
and aydy. 

being equal to 

the product of the change of velocity and the time, that is: 

BB 1 = ~; dy dt. (The velocity ~; dy is negative in the 

case of Figure II-5.) CD becomes C'D' and similarly DD' is 

equal to: DD' = ~ ~ dx dt. 

The velocities of dilatational deformation being ~ ~ dx and 

a v 
ay dy, they are by unit of length: 

au ax dx 

dx 

The sum 

au 
= ax 

~) ay 

av d ay y 
dy = 

av 
ay 

is the total rate of dilatational deformation, 

i. e. , the rate of change of volume by unit volume. Areas BCEB 1 and 

D 1 C 1 ED must be equal in the case of an incompressible fluid. Their 

difference gives the rate of expansion or compression in the case of a 

compressible fluid. 

II-3. 2 ANGULAR DEFORMATION OR SHEAR STRAIN 

Angular deformation may be illustrated by the behavior of 

a fluid particle flowing without friction around a bend. It is a matter 

of common observation that it is windier at a corner than it is in the 

middle of a street. In the similar case of fluid flow around a bend, pro-

vided we can neglect t.he effects of friction, the velocity has a tendency 

to be greater on the inside than it is on the outside of the bend, and the 

law V X R = CONSTANT may be approximately applied, where Vis the 

velocity and R is the radius of curvature of the paths. Hence the 
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edge AB of the particle A moves at a greater velocity than the edge 

CD and the particle is deformed angularly. (Figure II-6). This 

angular deformation is proportional to the difference of velocity be-

tween AB and CD. 

FIGURE II-6 

SHEAR DEFORMATION IN A BEND 

Now, considering for example the case presented in 

Figure II-7, in which the velocity of AB is u, and the velocity of 

CD is u + du = u + ~ ~ dy, then the distance CC 1 (or DD') 

after a time dt is ~ ~ dy dt, and the angular velocity is: 

au d 
8y y 

dy = 

41 
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FIGURE II-7 
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~v 
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ANGULAR OR SHEAR DEFORMATION 
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Similarly BB' (or DD") is equal to ~ : dx dt. When 

these two deformations exist at the same time, the sum of the angular 

velocities ( 
au 

-e-y + av) ----a-x is the rate of angular deformation. 

It is to be noticed in Figure II-7 that 
a u a v ey = ax and 

the bisectors of the angles made by the edges of the fluid particle tend 

to remain parallel to their initial positions during the angular deforma-

tion. This leads to the very important concept of rotational motion, 

where the bisectors do not remain parallel to their initial positions. 

~u ~u . ou 

Ti oydydt Tydydtn~ut~dy 
/"/1 .... ..,.. 

_,-' /1 -' I\ 
/ / ..... ~ 

~-i<r--7f I f"" F::::.....-1-+--.,. 
y 

I 
I 

I 

I ', I \ \ 
I \ \ 

I ou \ \ 
- by ..> 1------L 

ov dxdt 
Ox 

'--------x 
--............. _ .... _-----~rt" 

ov 
0 X OV 

vt ~dx 

Shear 
Deformation Rotation Rotation and 

Without Rotation Without Deformation Deformation 

au av 
0 

au av 
'I 0 

au av 
1 8y - rx = 8y rx 8y 8x 

au + av f 0 
au + av 

0 
au av f 8y 8x 8y 8x = 8y + 8x 

FIGURE II-8 

ROTATION AND DEFORMATION 
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II-4 ROTATION 

It is known from elementary hydraulics that flow motions are 

classified according to some of their typical characteristics. For example, 

a flow.may be laminar or turbulent, with or without friction, steady or unsteady 

and so on. Now, one of the most important divisions in hydrodynamics 

consists of considering whether a flow is rotational or irrotational. 

Hence, the abstract concept of irrotationality is fully developed 

in the following paragraphs. 

II-4. l MATHEMATICAL DEFINITIONS 

It has been shown that the angular velocities of deformation 

dU dV 
(ly and Clx. The rotation of a particle is proportional to the are 

difference between these components. . Clu (lv dt 
Indeed 1f Cly dt = Ox , 

there is angular deformat~on withou~ rotation: the bi~ectors do not 

rotate. But if ~; dt I= :: dt, the bisectors change their direction, 

and there is either both rotation and angular deformation, or rotation 

only (Figure II-8). 

The diffe renee [ Clu - Clv J defines the rate of rotation. 
(ly dX 

A two-dimensional irrotational motion is defined mathematically by 

dU dV 
(ly - dX = O. 

In hydrodynamics, angular deformation can be considered 

. . dU dV dU dV 
w1thout rotatlOn when Cly - Clx = 0 and Cly + Clx i- 0, and, theoret-

ically, rotation can exist without deformation when 
dU 
Cly -

dV -1. O 
ox r and 

~; + ~: = 0. But in practice, this case is rare and physically, 

rotation generally involves angular deformation. However, a forced 

vortex schematically shown on Figure II-9, is a case where 
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particles rotate without deformation, but this case can be considered 

more as a special case of hydrostatics where the centrifugal force is 

added to gravity rather than a real rotational flow. 

II-4. 2 

FIGURE II-9 

FORCED VORTEX 

VELOCITY POTENTIAL FUNCTION - DEFINITION 

This concept of irrotational motion is very important in 

hydrodynamics since it can be used to provide many relatively simple and 

powerful analytical, graphical or analog methods which can be used 

in the solution of hydraulic problems. The best known example is the 

two-dimensional steady flow net method. Some others are method of 

45 

---~-------------~------------



relaxation, conformal mapping, potential function calculation, analog 

methods, etc, 

Associated with this concept of irrotationality, there exists 

an efficient mathematical tool: the so-called velocity potential function 

cp which for the X and Y directions can be defined as u = :! and 

- 8cp 8cp 8cp v -
8 

y. It can also be defined as u = -
8 

x, v = -
8 

y arbitrarily. 

Substituting these values in the above condition for irrotational flow 
2 2 

8u 8v _ . 8 cp 8 cp _ 
8 y - 8 X - O ylelds 8 y 8 X 8 X 8 y - O ' It is assumed that the dif-

ferentials of cp are continuous. 

Since the differentiation with respect to two variables is 

independent of the order of differentiating, the above equation is seen 

to be an identity, which substantiates the definition of cp given above. 

The value of the velocity V in terms of velocity potential 

function cp is V = and in rectangular coordinates 

II-4. 3 THEORETICAL REMARK ON IRROTA TIONAL FLOW 

It is useful to study the characteristics of an irrotational 

flow. For this purpose, the previous example of a flow without fric-

tion in a bend, or of a free vortex motion defined by the law VXR = K, 

will be analyzed. (See Figure II-1 0). 
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FIGURE II-1 0 

IN THE CASE OF AN INFINITELY SMALL DISPLACEMENT 

IN AN IRROTATIONAL FLOW, THE BISECTORS OF A FLUID 

PARTICLE TEND TO REMAIN PARALLEL 

Consider an elementary fluid particle ABCD between 

two path lines defined by their radius of curvature R
1 

and R
2 

such 

that R
2 

= R
1 

+ dR, dR being infinitely small. 

After an interval of time dt, ABCD becomes A'B'C'D', 

and 
K~ AA' = cc• = V

1
dt = 

Rl 

BB 1 = DD' = v 
2

dt = K dt 
Rz 
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The side AB rotates to A'B' by an infinitely small range 

r such that 

- r = - tan r "' 

or one has also 

r "' tan r AA' 
- 0 1A 

Equating these last expressions leads to: 

0 1B + dR 
o•B = 

K dt 
R O'B 

2 

K dt 
R O'A 

1 

or 0 1 B = R
1 

and O'A = R
2

. Substituting these values yields 

- K dt K dt 
r . Or dR being small, -r = RT. 

- - Rl R2 1 

On the other hand since e = 1 
AA 1 

~ 
= K dt 

RT 
1 

hence -r = 

The side AC rotates into A'C' through the angle e
1

. 

Since the two sides AB and AC rotate by the same quantity e
1

, 

but in opposite directions, the bisector AX remains parallel to the 

bisector A'X'. The orientation of this median line remains unchanged, 

which is the condition for the motion to be irrotational. 

It must be emphasized that the previous demonstration 

holds true when an infinitely small displacement is considered. It does 

not hold true for a finite displacement, as is illustrated by Figure 

II-11. It can be seen that the two bisec'tors have a tendency to rotate 

in the same direction. 
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FIGURE II-ll 

FOR A FINITE DISPLACEMENT, BISECTORS 

ROTATE IN AN IRROTATIONAL FLOW 

Both the angle of rotation of the bisectors and the angle of 

angular deformation have a finite value for a finite displacement of the 

particle, They both tend to be infinitesimal when the displacement 

tends to zero. However, in the latter case, the angle of rotation is an 

infinitesimal of higher order than the angle of deformation, ·Irrotation

ality has to be considered locally and not along a path. 

The angle between AX and A'X' 

r or e 
-o when dS- 0 

However, the bisectors remain parallel in the case of uniform flow and 

in the case of linear deformation, where neither angular deformation nor 

rotation occurs, as is shown by Figure Il-4. 
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II-4. 4 PRACTICAL LIMIT OF VALIDITY OF IRROTATIONALITY 

II-4. 4. 1 Rotation Caused by Friction Forces: the Kelvin Theorem 

II-4. 4. 1. 1 

In practice it is very important to know when the motion of 

the fluid particles can be considered as an irrotational motion. Only if 

the assumption of irrotationality is valid can the methods of calculation 

of a velocity potential function, conformal mapping, relaxation methods, 

flow nets, electrical analogy, etc., be applied successfully. 

The concept of irrotationality is essentially mathematical and 

is au - a v = 0 in the case of two-dimensional motion. The difficulty 
a y ax 

arises when one tries to establish some simple rules for assessing the 

validity of this assumption because such simple rules do not exist. 

Rotation may be caused by viscous forces, but a rotational 

solution also exists for a perfect fluid, and irrotational flows exist in a 

viscous fluid. 

For example, let us consider a reservoir, where the flow 

velocity is practically zero, and a connected duct. Initially the fluid is 

irrotational, but the flow becomes rotational at the entrance of the duct 

under the influence of the viscous stresses: so friction forces cause 

rotation. It is the Kelvin Theorem which applies in the case where IJ. 

is different from zero, for fluid of constant density, under a constant 

gravity force. 

II-4. 4. 1. 2 

An exact demonstration of the theorem is beyond the scope of 

this book as a physical introduction to rotation will suffice in the following. 

Now, it is easy to see whether a nwtion is physically rotational 
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or irrotational by a consideration of friction effects. Figures II-12 and 

II-13 are self-explanatory and illustrate some cases where it is possible 

to see easily whether the assumption of irrotational motion is permissible. 

Motion will be assumed to be irrotational when the velocity 

gradient is small (periodic gravity wave) or when streamlines converge 

rapidly and when the velocity distribution depends on the shape of the 

boundaries and not on their roughness. 

Motion is rotational when the boundary layer affects the 

velocity distribution or in a diverging flow. 

The definition of the boundary layer itself can be based on 

the concept of irrotationality. The boundary layer is the domain where 

the flow is always rotational while it is often irrotational outside 

the boundary layer. A motion may be considered irrotational only if 

the boundary layer is of little importance, i.e., relatively thin. Figure 

II-14 illustrates the case of a weir where the boundary layer thickness 

increases downstream. The motion is irrotational only near the top. 

The same motion may be considered as rotational or irrotational 

according to the phenomena to be studied. For example, the flow passing 

through an orifice is considered as an irrotational flow if it is desired 

to determine the distribution of pressure against the wall (Figure II-15). 

However, for analyzing the coefficient of discharge of this orifice, since 

this coefficient is a function of the thickness of the boundary layer near 

the orifice, the motion may no longer be considered as irrotational. 

In elementary hydraulics the value of this coefficient is given as a 

function of the Reynolds number because of the relationship between the 

thicknes.s of the boundary layer and the Reynolds number. 
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IRROTATIONAL ALMOST IRROTATIONAL 

FIGURE II-12 

EXAMPLES OF ROTATIONAL AND IRROTATIONAL MOTION 

IRROTATIONAL (Convergent) 

FIGURE II-13 

I 
VERY ROTATIONAL 
(Lines of Separation) 

AIR VENT 

IRROTATIONAL ZONES (Stagnant) 

EXAMPLES OF ROTATIONAL AND IRROTATIONAL MOTION 
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AIR ENTRAINMENT 

FIGURE II-14 

EFFECT OF THE BOUNDARY LAYER 

ROTATIONAL ---4-

BOUNDARY LAYER 

IRROTATIONAL 

FIGURE II-15 

COEFFICIENT OF DISCHARGE DEPENDS ON 

THE THICKNESS OF THE BOUNDARY LAYER 
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II-4-4. 2 Rotational Solutions in a Perfect Fluid 

It is seen that the rotation may physically be due to the friction. 

The physical considerations on friction effects have permitted defining 

practical rules to follow. 

However, there exist mathematical solutions of rota-

tional motion where the friction forces are neglected, The classical 

Bernoulli equation of elementary hydraulics is valid only along a stream-

line when motion is rotational without friction (see Chapter X). Another 

example is Gerstner's theory on periodic gravity waves, In this theory, 

the fluid particles describe circles, and also rotate about themselves 

in the opposite direction (Figure II-16); it is expressed by an exact 

mathematical solution of the basic equations in which the friction terms 

have been neglected, but in which the inertial rotational terms are 

taken into account exactly. 
DIRECTION OF 
WAVE TRAVEL 

FIGURE II-16 

'\ATH 

-ROTATION 

PATH AND ROTATION OF A FLUID 

PARTICLE IN A GERSTNER WAVE 
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On the other hand, some kinds of motion where friction has 

an important effect are studied as irrotational motion. For example, 

friction forces have a predominant effect on such phenomena as the 

damping of a gravity wave through a filter and flow through a porous 

medium (Figure II-17}. However, in these cases, only the mean 

velocity with respect to space is considered. The actual system of 

complicated rotational motions through the porous medium is studied 

as an average motion with respect to space which is irrotational at low 

Reynolds number (see Chapter IX}. Similarly, turbulent flow is 

strongly rotational but the mean motion with respect to time may often 

be considered as irrotational (see Chapter VII}. 

FIGURE II- 17 

FLOW THROUGH POROUS MEDIUM IS ROTATIONAL 

BUT THE MEAN MOTION CAN BE IRROTATIONAL 

55 



II-4. 4. 3 The Case of Viscous Irrotational Flows 

It may also occur that the flow is irrotational, whereas the 

coefficient of viscosity is not zero. This happens first when the sum of 

all the viscous terms which appear in the momentum equation equal zero, 

although each term individually is different from zero. Such kinds of 

motion are dissipative and irrotational. 

A specific example of such a case is the motion generated by 

a circular cylinder rotating steadily about its axis in an unbounded viscous 

incompressible fluid. The velocity gradient normal to streamlines can be 

large near the cylinder. The motion is still irrotational (see Figure II-18}. 

The motion of a free vortex is also the same whether one con-

siders the fluid perfect or viscous. The solution to the momentum equa-

tion for a perfect fluid (VR = constant} also makes the sum of all viscous 

terms of the momentum equation equal to zero. 

FIGURE II-18 

VISCOUS IRROTATIONAL FLOW GENERATED IN AN 

UNBOUNDED FLUID BY A ROTATING CYLINDER 
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II-4. 4. 4 Energy Dissipation, Shear Deformation, and Rotationality 

It has been seen that rotation may be caused by viscous forces. 

However, the fact that the motion is rotational does not necessarily mean 

that the motion is dissipative. A motion is dissipative when there are 

linear and/or angular deformations associated with a non-negligible vis

cous coefficient. So an irrotational free vortex can be dissipative, while 

a rotational forced vortex is not dissipative. 

Indeed, it will be seen in Section V -5. 4. 2 that the stresses 

<T and T are proportional to the coefficients of linear and angular de

formations presented in this chapter in Section ll-5. 2. So the viscous 

stresses. owe their values and even their existence to the deformation 

and not to the rotationality. 

It can be concluded that in general friction may cause rotation, 

but the existence of rotation does not imply friction, while deformation 

associated with a non-negligible viscosity does. 
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II-5 

II-5. 1 

MATHEMATICAL EXPRESSIONS DEFINING THE MOTION 

OF A FLUID PARTICLE 

TWO-DIMENSIONAL MOTION 

Consider a fluid particle ABCD at time t. (Figure II-19). 

The velocity components u and v are functions of X and y such 

that 
au au d and dv = au dx+ a v At time du =ax dx + ay y ax ----ay dy. 

t, the coordinates of A are x, y and of D are X t dx, y + dy. 

The coordinates of A and D at time t + dt become: 

{: 
+ u dt 

+ v dt 
A' 

D' {: 
+ dx + (u + du) dt 

+ dy + (v + dv) dt 

or 

r" .. dt + (~dx + au 
dy) dt u 

ax ay 
D' 

(~dx ~ dy) y + dy + v dt + + dt 
ax ay 

Adding and subtracting { ~: dx dt to the abscissa and 

~ ~ ~ dx dt to the ordinate, leads to the following forms in which the 

phys1cal meaning of the terms becomes apparent by reference to the 

previous paragraphs. 
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y + v6t --------------------
ov ov ov 

v+Tdy t r+-dx+-dy I y ou ox oy 
I I u+,oydy 

Dl 
I 
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ox oy 
I 
I 

v 
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I 

t 
I 
I 

ou 
I 

y -----
81 

u +~dx I 
A' u I 

I I I I. 
I I I 

X 
0 X x+dx x+u6t 

FIGURE ll-19 

VELOCITY COMPONENTS OF A FLUID PARTICLE 
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D'lx+dx+udt+ ~~dxdt+-}~ ~;+ t)dydt-~0: 
a v 1 ( a u a v) 1 ( a v 

Y + dy + ~ + ay dy dt + 2 \ay + --ax dx dt + 2 ax 

- ~ ;) dy dt 

- ~ ;) dx dt 
~r-~· ~--~----J 

.Trans- Rate of Angular 
lation Dilatational Deformation 

Initial 
Coordinates 

or Linear'------.------' 
Defdrmation 

Angular or Shear 
Deformation 

Rate Of 
Rotation 

Rotation 

II-5. 2 THREE-DIMENSIONAL MOTION - DEFINITION OF THE 

VORTICITY 

Similar to the two-dimensional case, the coordinates of a 

point D' (x + dx, y + dy, z + dz) of a three -dimensional elementary 

fluid particle after a time dt become: 

X + dx + U dt + ( ~ ~ dx + 

y + dy + v dt + ( ~ : dx + 

z + dz + w dt + (~ dx + 
ax 

Adding and subtracting l a v d dt 
2 ax y and 

1 aw dz dt and 2 ay 

and .!_ au dx dt 
2 a z and 
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au d a-y y + 

~d + 
a Y Y 

~d + a Y Y 

1 aw dz dt 2 ax 

1 au 
dx dt 2 ay 

1 av dy dt 2 a z 

au 
az 

a v 
az 

aw 
a z 

dz) dt 

dz) dt 

dz) dt 

to the first line; 

to the second line; 

to the third line 



leads to 

x+ dx+ udt+ ~ dx dt+ [.!. (~ + ~) dy+.!. (au + ~) dz ox 2 ax ay 2 az ax 

+ .!_ (~ - _2:!!) dz - .!_ (~ - aayu) dy ] dt 2 a z ax 2 ax 

y+ d + v dt + ~ d dt + [ .!_ (~ + ~)dz + .!_ (~ + ~) dx Y ay Y 2 , a y a z 2 a x a y 

+ } ( ~ : - ~ ~ ) dx - ~ ( ~ ; - ~ :) dz J dt 

z + dz + wdt + ~ dzdt + [.!. (~ a z 2 a z 
+ ~)dx+.!.( aw +~)d ax 2 ay az y 

+ ~ ( ~ ; - ~ :) dy - t 

And with the following notations: 

Coefficients of dilatational deformation: 

au 
a= -ax b = a v ay 

Ccietfiderits of shear deformation: ". 

f 1 (~ + ~) = 2 ay az 

h 1 (~ = 2 ax 

Coefficients of rotation: 

= t ( ~; -~) az 

61 

+~) ay 

_£..1::) 
ay 

aw 
c = az 



x + dx + u dt + a dx dt + (h dy + g dz) dt + ( '1 dz - \, dy ) dt 

y + dy + v dt + b dy dt + (f dz + h dx) dt + ( \, dx - S dz ) dt 

z + dz + w dt + c dz dt + (g dx + f dy) dt + ( S dy - '1 dx ) dt 

Initial Co
ordinates 

Dilatational 
Deforma

tion 

Angular 
Deformation 

Rotation 

Translatory 
Motion 

2s , 2'1, and 2\, are the components of a vector which represents the 

vorticity of the fluid particle. A three -dimensional irrotational motion 

is defined by s = 0, '1 = 0, and \, = 0; that is: 

II-5. 3 

aw av aw au 
ay = """""""FZ ' = ax, = ay 

VELOCITY POTENTIAL FUNCTION IN THE CASE OF A 

THREE-DIMENSIONAL MOTION 

Associated with the mathematical representation of three-

dimensional irrotational motion, the velocity potential function is 

defined by 

u = 8cj> ax and w = 8cj> az 

which may be written vectorially: V = grad cj> or V = \l cj> 
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Substituting these values in the above conditions yields: 

= = ily ax ' az ily a X iJz 

which substantiates the definition of 4> since 4> always satisfies 

the conditions for an irrotational flow. In other words, the existence of 

4> implies that the flow is irrotational. 

Potential function is a matter for further study. (See 

Chapter XI). 

Il-5. 4 STOKES ANALOGY - EXPERIMENT OF HELE-SHA W 

A three-dimensional rotational motion may be 

a two-dimensional irrotational motion when the rotation is always 

in the same plane. For example, a thin layer of water flowing on a 

horizontal glass plate in which the thickness of the layer is very small 

in comparison with the other dimensions, has a rotational motion in a 

vertical plane only (Figure Il-20}. Seen in plan, the motion would 

appear as two-dimensional irrotational motion (see Problem VI-5}. 

In the case of Figure II-20, motion in the vertical plane 

XOZ is rotational, and ~ ~ -
aw 
a x 

irrotational in the planes XOY and YOZ: 

0, while the motion is 

au 
ay 

av ---ax = 0 and 

av a w ---az - ay = o. It may be demonstrated that the average velocity 

with respect to a vertical verifies similar conditions of irrotationality. 

The streamlines seen in plan are simply shown by the 

injection of dyes. The same result is obtained by a flow between two 
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z 

THIN LAYER OF WATER 

GLASS PLATE 

FIGURE II-20 

IN A THIN FLOW OF WATER, ROTATION EXISTS 

ONLY IN A VERTICLE PLANE 

vertical parallel planes. This method is often used to determine the 

flow pattern of two-dimensional or almost two-dimensional motion. 

Some examples are: flow pattern around a wing, influence of an intake 

on the flow of a wide and shallow river. (Figure II-21). 
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INJECTION 
OF DYE 

FIGURE II-21 

INJECTION OF DYE 

STREAMLINES 

INTAKE 

-----------------.... : ----------c-STREAMLINES 

EXAMPLES OF STUDIES BASED ON STOKES ANALOGY 

WITH VISCOUS FLOW 
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Il-l Consider a two-dimensional convergent as shown by the 

following figure. 

y 

A= 2ft t----------------------.-x 

Determine the coefficient of linear deformation at point x = 0, y = 0 

where V = u = 1 ft/sec. 

Answer: 

au 
ax = 0. l 

-1 sec 

Il-2 Indicate the domains of the following figure where the flow 

can be considered as irrotational and the domains where the flow is 

rotational. Give the reasons which prevail in your choice. 
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II-3 Determine the coefficients of dilatational and shear deformation 

and rotation for a flow between two parallel planes separated by a distance 

d = 0. 01 feet. One of the planes is assumed to be fixed, the other one 

moves at a speed V = 0. 1 ft/sec. The velocity distribution between the 

two planes is linear. 

Answer: 

a = 0, h = - (; = 5 sec -l all other coefficients are zero. 
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II-4 The velocity distribution of a laminar flow between two 

parallel planes is given by the equation 

u = _1_ Q! / - ~ [" - ~] y 
2f.l 2f.l e<-

where f.l is the coefficient of viscosity, e is the distance between the 

two planes, a is a constant equal to the head loss or decrease of pres

sure per unit length: a = ~~. V is the velocity of one of the planes, the 

other one being assumed to be fixed. 

Determine the coefficient of dilatational and shear deformation 

and rotation as a function of y. Consider the two cases where a = 0 

and V = 0 on one hand, and a= 0 and V = 0 on the other hand as two 

particular cases, and explain their significance. 

Answer: 

If a = 0, V oft 0 the flow is created by the moving plane; 

if a =F 0, V = 0 the flow is due to a gradient of pressure ~~. 

II-5 Express velocity components as a function of q, in cylindrical 

(r, 8, z) and spherical (r, ~. 8) coordinates. 

Answer: 

Cylindrical: = 1 aq, = r as' w 
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1 8"' 
r sine~ 

Spherical: 

II-6 Derive the expression for irrotationality in a polar system 

of coordinates (r, e). The components of velocity are: radial velocity 

v r , tangential velocity v e . 

Answer: 

II-7 Consider two coaxial cylinders of radius R
1 

and R 2 which 

are rotating at angular velocity w
1 

and w 2 respectively. The velocity 

distribution of the fluid between these two cylinders is given as a function 

of r by the expression (R
1 

< r < R
2

) 

Determine the value of the rotational coefficient and the relationship 

between w1 and w 2 which makes the flow motion irrotational. 

69 



Answer: 

v = 0 
r 

1 (ave + ve) 
2 ar r = 

For irrotationality: 

1 
(w 2 R~ - R;) 

- Rz 
wl 

R2 
2 1 

w R
2 = constant, i.e.' vxR = constant 

II-8 The equations for an average viscous flow through porous 

medium are defined by: 

a p = Ku ax 

Bp = Kv 
Ely 

Demonstrate that such a flow is irrotational. The equations for an 

average fully turbulent flow through rocks are 

8p Ku 
2 

ax = 

8p Kv 
2 

By = 

Demonstrate that such a flow is in general rotational. 

II-9 Demonstrate that at a given location in a two-dimensional 

flow, the value of angular rotation is independent of the axis system of 
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references, i.e., 

l (8v 8u) l (8v' 8u') 
2 8 x - 8 y = 2 8 x' - 8 y' 

u' and v' being the velocity components along the x -axis and the 

y -axis respectively. 

II-10 Demonstrate that 
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CHAPTER III 

THE CONTINUITY PRINCIPLE 

III-1 ELEMENTARY RELATIONSHIPS 

III-1. 1 THE CONTINUITY IN A PIPE 

The principle of continuity expresses the conservation of 

mass in a given space occupied by a fluid. 

The simplest, well known form of the continuity rela-

tionship in elementary fluid mechanics expresses that the discharge for 

steady flow in a pipe is constant; that is, the relationship: 

p . V · A = constant 

where A is the cross sectional area of the pipe and V is the mean 

velocity. 

In the case of an incompressible fluid (p = constant) in a uniform 

pipe (A constant), the continuity relationship becomes simply: 

V = constant. Then, considering that the axis OX and the axis of 

the pipe are the same, and that V = u, the continuity principle expressed 

dV 
by a differential form becomes: dx = au = o. ax 

In general, more complicated forms of continuity relation-

ships have to be considered in hydrodynamics. The case of a two-

dimensional motion of an incompressible fluid is now given as a first 

example. Then the general case will be treated. 
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III-1. 2 TWO-DIMENSIONAL MOTION IN AN INCOMPRESSIBLE 

FLUID 

Since no fluid is being added or subtracted during the 

motion, the quantity of fluid involved is constant. This may be ex

pressed mathematically in the case of two-dimensional incompressible 

motion as follows: 

Consider rectangular boundaries in space in two-dimensional 

fluid motion as shown in Figure Ill-l. The rectangular boundaries have 

sides of length a and b and are considered to be fixed with respect 

to the axes. 

y 

0 

a 

FIGURE III-1 

NOTATIONS 

b 

X 
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The volume of fluid entering the left-hand boundary line by 

unit of time is a u
1

, and at the same instant, the amount leaving the 

right-hand boundary line is a u
2

. The difference in amount in the OX 

direction is thus: a(u
2 

- u
1

) = a !'> u. 

Similarly, the difference in amount in the OY direction is: 

Since for continuity no fluid is being added or subtracted, 

thetotalmustbezero: a C.u+b C.v = 0; that is, C.u + C.v = 0 b a · 

In the limit, when b and a approach zero, one 

b . au + av - 0 
o ta1ns ax a Y - • This differential form is permitted because 

of the assumption of a continuous fluid. au 
It should be noted that a x 

and ~ v are the rates of linear deformation of a fluid particle; hence, vy . 

in an incompressible fluid, the total sum of linear deformation is nil, 

as has been previously noted in Chapter II-3. l. 

III-I. 3 THE CASE OF A CONVERGENT FLOW 

An example will demonstrate the physical meaning of the 

differential form of the continuity equation. The primary purpose of 

this simple example is to show how to pass from mathematics to physics 

and vice versa. 

Consider a two-dimensional convergent flow of a perfect 

fluid, as shown in Figure III-2. At sections (l) and (3), v is zero, 

and u is constant with respect to the distance measured in the OX 

direction. au Hence the continuity relationship is simply ax 
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At section (2), v f. 0. the maximum value of v is at 

the boundaries and v tends to zero at the OX axis by symmetry. 

Hence the variation of v with respect to y is not zero, even if v 

equals zero on the axis. 
. au 

Otherw1se ax would be equal to zero and 

u would be a constant along the axis. On the other hand, 
a v . 
-- 1S ay 

always negative (Figure Ill-3}, because either v or y is negative 

alternately. 

Hence, according to the continuity relationship, 
au . 
-- 1S ax 

always positive and u increases regularly from section (1) to section 

( 3), which is evident. 

III-2 

III-2. 1 

THE CONTINUITY RELATIONSHIP IN THE GENERAL 

CASE 

ESTABLISHMENT OF THE CONTINUITY RELATIONSHIP 

Consider a fixed volume of fluid of which the edges dx, 

dy, dz are parallel to the axes OX, OY, OZ, respectively. 

(Figure III-4}. The continuity relationship is obtained by considering 

that the change of fluid mass inside the volume dx dy dz during the 

time dt is equal to the difference between the rates of influx into and 

efflux out of the considered volume during the same interval of time. 

The fluid mass at the time t is: p dx dy dz. 

After a time dt, because of the change of density with 

respect to time, the quantity of fluid mass becomes: 

( p + ~ dt) dx dy dz at 
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FIGURE III-Z 

THE CONTINUITY IN A CONVERGENT- NOTATION 

FIGURE III-3 

VARIATION OF v IN A CROSS 

SECTION OF A CONVERGENT FLOW 
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CONTINUITY - NOTATION 
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Hence the change of fluid mass in a time dt is: 

p dx dy dz - ( p t ~ ~ dt} dx dy dz = - ~ ~ dt dx dy dz (1} 

On the other hand, if one takes into account the change in 

velocity and in density with respect to space coordinates, the quantity 

of fluid mass entering through the section ABCD during a time dt, 

parallel to the OX axis, is the product pu times the area perpen-

dicular to OX (ABCD} and the time dt. Since ABCD = dy dz, the 

quantity of fluid mass entering is pu dy dz dt. The variation of u 

along AB and AD with respect to dz and dy is of an infinitely 

small order and is neglected. Now the quantity of fluid mass coming 

out during the same interval of time through the section EFGH is: 

( p u t ~ dx} dy dz dt ax 

In the general case, both the density p and velocity u 

are assumed to be changed along dx. Hence the difference is: 

( pu + 8a~J<u dx} dy dz dt pudydzdt = ~iudxdydzdt 

Similarly, the difference due to the components of motion 

parallel to the OY and OZ axes are respectively: 

~Yv dx dy dz dt 

~ dx dy dz dt 
az 

due to the difference of discharge across the 

sections BFGC and AEHD (dx dz} 

due to the difference of discharge across the 

sections AEFB and DHGC (dx dy} 
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The total change of mass contained within the elementary 

region during the time dt is: 

( 
a pu 

ax- + a pv ay + ~) flz 
dx dy dz dt (2) 

Equating (l) and ( 2) yields: 

flp - -a-T dx dy dz dt = ( 
a p u 
ax-

and dividing by dx dy dz dt: 

+ a pv ay 

+~ 
ax 
+~ 

fly + 

+ ~) flz 
dx dy dz dt 

~ 
az = 0 

Sl.nce ~ = au + u .£..£... and similarly for the 
ax p ax ax' 

~d~h .1 .. other terms fly an az ' t e ctmtinulty re ahonshlp becomes: 

flp + (au + av + aw) + ~ ~ ~ = lit pax fly ax uax+vay+waz 
0

· 

These continuity relationships can be written in a shorter 

way as follows: 

__£_e - __£_e 
+ div pV = 0 or + v. pV = 0 

at at 

or 
__£_e - - -+ p div V + V. grad p = 0 

at 

~ 
a P u. 

or using the tensorial notation + 1 = 0 where the subscript 
a t a xi 

i means repeated operations along the ox, OY and oz directions. 
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III-2.2 PHYSICAL MEANING AND APPROXIMATIONS 

Consider respectively the three groups of terms: 

~ a t 

(~ a v ~) div v p 'V. v p ox + ay + a z 
or p or 

u H ~ ~ - - v. 'V p + v a Y + w az or v. grad p or 

III-2.2.1 The first term, __£_£ 
at· is the variation of the density with 

time at a given point. This term is nil in the case of: 

a. incompressible fluid, since p is a constant; and 

b. a steady motion of a compressible fluid. 

This term has to be considered when sound, water hammer, shock 

waves, etc. are studied. 

III-2.2.2 The second group of terms is proportional to the variation 

of speed in the direction of motion at a given time. In the simple case 

of a three -dimensional motion of an incompressible fluid 

+ ....£...::. ay 
+ aw 

a z = 0 or 

-div V = 

'V. v = 

0 

0 

When div V > 0, an expansion of the fluid is indicated, and converse-

-ly, div V < 0 signifies a compression. 

III-2.2.3 The third group of terms is proportional to the variation of 

density with respect to the space coordinates at a given time. This 

80 



. ' -

variation is usually negligible in comparison with other variations. 

For example, consider a unidimensional sinusoidal acoustic 

wave. The variation of density is given as a function of time and dis-

tance by the relationship p = A sin (Ct + x). The variation of p 

with respect to time t is ~ 1 = A C cos ·(Ct + x), and with respect 

~ ax = A cos (Ct + x). Hence, to the distance x along the OX axis, 

~ ax 
= 

Since C is usually large compared to the particle velocity 

u, u ~ ~ is usually negligible by comparison with ~ i 
However, there is an exception to this rule: the case of 

shock waves where the variation of p with respect to space is the-

oretically infinite at the front of the wave. (Figure III-6). 
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x + dx 
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FORMATION OF SHOCK WAVE 

82 

I 
A 

X 

X 

X 

X 



This phenomenon occurs when there is a great variation of 

pressure which has an effect on the celerity of the wave motion which 

in turn becomes greater than the velocity of sound. A shock wave 

travels at a higher speed than usual pressure waves such as acoustic 

sound or water hammer. Hence, when a supersonic flow or an effect 

of underwater explosion is studied, the variation of the density with 

respect to the distance has to be taken into account in the continuity 

relationship. 

III-2.2.4 The following table summarizes these considerations: 

Uniform flow of an incompressible 

fluid 

Two-dimensional flow of an 

incompressible fluid 

Three -dimensional flow of an 

incompressible fluid 

Unsteady motion in a com-

pressible fluid at usual speed. 

(Acoustic wave, water hammer) 

Unsteady motion in a compres~ 

sible fluid at high speed. 

(Shock wave) 
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ax 

au 
ax 

au 
ax 

div 

~ 
at 

~ 
at 

.-£.e. 
at 

~ 
at 

= 0 

+ av 0 
ay = 

+ av + aw 
0 

ay az = 
-v = 0 

+ [ au + av + aw) 
P ax ay a z = 

-+ p div v = 0 

+ ~ + ~+ ~ ax ay a z 

-+ div pV = 0 

0 

= 0 



III-3 SOME PARTICULAR CASES OF THE CONTINUITY RE

LATIONSHIP: GRAVITY WAVES, PRESSURE WAVES 

The continuity.relationship is often used in other forms in 

hydraulics. These forms are not so general but more adapted to in-

tegration for the phenomena to be studied. Some examples of the dif-

ferent forms used are provided by the case of unsteady flow, mainly 

unidimensional either at free surface (channel, river) or under pres-

sure (pipe, gallery). 

An unsteady free surface flow results in gravity waves:(l) a 

change of level with respect to time and space, caused by gravity ac-

tion. Some examples are: flood waves in a river, bore (translatory 

waves), and seiche (oscillatory waves). An unsteady flow under pres-

sure results in pressure waves: a change of pressure with respect to 

time and space, caused by a gradient of pressure. Two examples are: 

water hammer and acoustic wave (not considered in hydraulics). Such 

gravity waves and pressure waves are studied from the special con-

tinuity relationships given below. They are valid when the distribution 

of velocity in a cross section is assumed to be a constant. 

In both cases, the continuity relationship is obtained by 

stating that the change of volume of water during the interval of time 

dt between two cross sections separated by the infinitely small dis-

tance dx is equal to the difference between the influx and efflux from 

the considered volume during the same interval of time. 

(l) Steady undulations such as undulated jump or flow around a bridge 

pier are also considered as gravity waves. 
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III-3. 1 TRANSLATORY GRAVITY WAVES 

Consider the volume defined by the two cross sections x 

and x + dx and the free surface at time t. (Figure III-7}. 

h 

----r--
1 
I 
I 
I 
I 
I 

TRANSLATORY 
WAVE PROFILE 

~----~------~--------------------~-x 0 X x tdx 

FIGURE III-7 

TRANSLATORY WAVE 

The volume of influx during a time dt into the considered volume at 

x is: q dt or h u dt, where q is the discharge, h the depth, and 

u the horizontal velocity component. 

The efflux out of the volume at xtdx is: 

or 
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Hence the change of volume between these cross sections 

x and x + dx is a difference 

- ~~ dx dt or a h u dx dt 
Bx (1) 

On the other hand the volume at the time t is h dx, and 

at the time t + dt, since the free surface level changes: 

( h + ~ ~ dt J dx. Hence the change of volume during time dt is: 

a h at dt dx (2) 

Equating (1) and (2) and dividing by dx dt, one obtains ~ ~ + ~ ~ = 0, 

= u a h + h a u the continuity 
a X ax' 

a h a hu a hu 
or at + -aK = 0; and since ax 

relationship becomes: 

a h + a h + h au = 0 at u ax ax 

III-3.2 WATER HAMMER 

The continuity equation for an unsteady flow in a pipe is 

similarly obtained by equating the difference between the influx into 

and efflux out of a given volume during an interval of time dt to the 

change in volume of the fluid during the same period of time. 

Consider a pipe as shown by Figure III-8 and the two cross 

sections x and x + dx, where the velocities (assumed to be a con-

stant in these cross sections) are u and u + au dx 
ax , respectively. 

The net inflow during time dt is: 

rr D2 
[ ( u + au 

dx) - u J dt 
rrD

2 
au dx dt -4- ax = -4- ax 
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FIGURE III- 8 

WATER HAMMER - NOTATION 

This net inflow has to be equal to the sum of: 

(l) the change in volume by compression (or 

expansion) of the fluid already in the cylinder, 

and 

(2) the change in volume enclosed by the pipe wall 

as it stretches (or contracts) with the changing 

pressure. 

This increase in pressure in time dt is ~ l dt. This 

causes a compression of the cylinder of fluid equal to ~ ~ dt d: 

where K is the bulk modulus of elasticity of the fluid. Hence the 

change in volume by reason (l) is: 

...Q..E. 
a t 

dt dx 
~ 

The same increase in pressure causes an increase in the stress in the 

pipe wall equal to: ~ f dt eDE where e is the thickness of the pipe 
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wall. (See Figure III -9). Under this increased stress the pipe wall 

stretches in accordance with Hooke's Law by the quantity: 

1T (D + d D) 
1TD 

FIGURE III-9 

= 

t 

WATER HAMMER - NOTATION 

where N is the increase of stress and E the modulus of elasticity 

of the pipe wall. That is: 

dD n- = 
...§...E. dt a t 

E 

D 
ze 

Now, the increase of volume by reason (2) is: 

[ 1T ( D : dD)
2 

dx = ( _1T~~~d_D_ ) dx 
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Introducing the above relationship, neglecting second order infinitely 

small terms, it is found that 

1rDdDdx 
2 = a P dt n 

The change of volume by reason (2) is: 

a P dt a t 
D 

--eE dx 

D 
eEdx 

Equating the net inflow with the change of volume by reason (1) and (2), 

eliminating 

III-4 

III-4. 1 

1T D2 
4 

dx dt, and rearranging yields 

ap 
TI = [ 

l 
K 

+ ____Q__ 
eE ] 

-1 au 
ax 

PARTICULAR FORMS OF THE CONTINUITY RELATION

SHIP FOR AN INCOMPRESSIBLE FLUID 

IRROTA TIONAL FLOW 

If the density p is a constant, the continuity relationship 

au 
has been seen to be -ax 

+ av 
ay + = 0. 

In the case of irrotational motion, a velocity potential func-

tion cp has been defined by the relationships: 

acp 
v = -ay and 

acp 
w =liZ 

Hence, introducing these expressions into the continuity relationship 

yields: 
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a aq, + a aq, 
+ a aq, 

0 ·ax ax ay ay az az = 

i.e. 
a 2<1> a2q, a2q, 

+ + = 0 --2 2 2 ax ay az 

which can be written \/
2 

<j> = 0. This is the well-known Laplace 

equation which has been subjected to extensive research in mathematical 

physics. 

III-4.2 LAGRANGIAN SYSTEM OF COORDINATES 

It has been explained in Chapter I that it is possible to 

study problems in hydraulics either in Eulerian coordinates or in 

Lagrangian coordinates (See I-3. 1). Since this last system of coordin-

ates is rarely used, the continuity relationship will be given here with-

out any comment for the simple purpose of recognition in literature: 

a (x, y, 
a (xo, yo' 

z) 
z ) 

0 

= 1 

x
0

, y
0 

and z
0 

are the coordinates of the considered particle at time 

t and x, y, z at time t. 
0 
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III-l Demonstrate that the continuity equation for a stream tube can 

be written 

a ( p A) + a ( p A V) 
at as = 0 

A is the cross section of the stream, and d s an element of streamline. 

III-2 Consider the two-dimensional motions defined by their velo-

city components 

u = A 

v = 0 

on one hand, and 

u = Ax+B 

v = 0 

on the other hand, where A and B are different from zero. Calculate 

the divergence, and tell in which case the fluid is compressible. 

Answer: 

~ 

First case: div V = 0 

Second case: divV = A 

91 



III-3 Establish the continuity equation in a cylindrical system of 

coordinates (r, 8, z). A polar element of volume r dr d8 dz will be 

used. The velocity components will be vr along a radius, v
8 

perpen

dicular to v , and w along the axis OZ . 
r 

Answer: 

III-4 

8 p + ~ r (p r v ) + ~ 
8t r 8r r r + 

8pv 
z 

8z = 0 

Express the Laplace equation 'i7
2 cp = 0 in a cylindrical system 

of coordinates (r, e, z). 

Answer: 

III-5 Establish the continuity equation for a stratified fluid of 

density varying with z as p - ~ ( ~ i will be assumed to be zero). 

III-6 Verify that the motion defined by the potential function 
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"' _ k cosh m (d + z) (kt ) 
'I' - - a - cos - m x m cosh md 

l) is irrotational; 2) satisfies the continuity equation; 3) is such that 

a<~>=o f d a z or z = - • 

III-7 Derive the continuity equation and \7
2 

<j> for an incompres-

sible liquid in spherical polar coordinate's (r, ¢, 8) by considering a 

small volume bounded by the surface: 8, 8 + dS, ¢, ¢ + d¢, r, r + dr 

Answer: 

1 a 2 l a 
(v8 sinS)+ r 

l av<j> 
(v r ) + = 0 -z ar r r sine ae sine ~ r 

l a v ~:J + 
l a 

(sin e ~:) + 
l a2 <\> 

0 = 2 ar 2 ae 2 . 2 e a<:>2 r r sine r s1n 
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CHAPTER IV 

INERTIA FORCES 

IV -1 MASS, INERTIA, ACCELERATION 

IV -1. 1 THE NEWTON EQUATION 

To cause the motion of a mass M, or, more generally, 

to change the state of an existing motion, it is necessary to apply to 

this mass a force F, which causes an acceleration ~~ such that -F- M dV 
- dt This is a vectorial relationship, i.e. true for both 

intensity and direction. 
dV 

The product M dt is the inertia force, which 

characterizes the natural resistance of matter to any change in its state 

of motion. 

In fluid mechanics, the considered mass M is the mass of 

a unit of volume. 

M = p. (unit of volume) = p 

where p is the density. Hence the fundamental equation of momen--- dV tun has the form F = p dt Its three components along the three 

coordinate axes OX, OY, oz du dv and dw are p dt 
, p d t , p dt 

respectively. 
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IV -1.2 RELATIONSHIPS BETWEEN THE ELEMENTARY MOTIONS 

OF A FLUID PARTICLE AND THE INERTIA TERMS 

To each kind of motion of the fluid particles that has 

been analyzed in Chapter II, there corresponds an inertia force, and the 

relationship between the kind of motion described and the corresponding 

inertia force is straightforward. This statement is developed. 

The elementary components of the change of position of a 

fluid particle as given in Chapter II are, in the case of a two-dimensional motion, 

Translatioh: The components of the velocity of translation 

are: u, v 

Dilatational Deformation:The components of the velocity of dilatational 

Shear Deformation: 

deformation are: 

~dx ax 
av d a-y y 

The components of the velocity of shear 

deformation are: 

1 [au+ a v] dy 
2 a y ax 

l [au+av] dx 
2 a y ax 



Rotation: The components of the velocity of rotation are: 

- ~ [~- ~) dy z ax a y 

~ (a v _ a uJ dx 
2 Ox 8 y 

To obtain the values of the inertia forces it is sufficient to 

take the above values per unit of time in order to obtain the corres-

ponding acceleration and to multiply them by the density p. 

For example, introducing the relationship u d t = d x, the 

inertia caused by the component of velocity of linear deformation is 

au au 
axudt, i.e., perunitoftime uax· Consequently, the corresponding 

term is 
au 

p u ax· 
Repeating this operation for all the velocity terms given 

above directly gives the inertia terms due to all kinds of elementary 

motions. 

IV -1. 3 TWO MAIN KINDS OF INERTIA FORCES 

Two main kinds of inertia forces may be distinguished, 

corresponding to two main kinds of acceleration or two main kinds of 

elementary motion: 

Local acceleration corresponding to a variation of 

the velocity of translation with 

respect to time. 
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Convective acceleration - corresponding to a variation of 

velocity of deformation and 

rotation with respect to space. 

The physical meaning of these accelerations and the cor

responding inertia forces .is shown first in the following; then their 

mathematical expression is demonstrated. Chapter V deals with the 

applied forces F which have to be equated to these inertia forces to 

obtain the momentum equation. 

IV-2 LOCAL ACCELERATION 

Local acceleration characterizes any unsteady motion, 

i.e. motion where the velocity at a given point changes with respect to 

time. Local acceleration results from a change in the translatory 

motion of a fluid particle imposed by external forces F. 

IV -2. 1 EXAMPLES OF FLOW WITH LOCAL INERTIA 

Local acceleration occurs in the following cases: 

IV-2.1.1 When the velocity, keeping in the same direction along a 

straight line, changes in intensity. If the velocity increases at a 

given point which involves a positive local acceleration, the inertia of 

the mass of fluid in motion tends to reduce the motion. 

Alternatively, if the velocity decreases, which corresponds 

to a negative local acceleration, the mass of fluid in motion tends to 

continue to move forward because of its inertia. 
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This is the case of motion in uniform flow in pipes or 

tunnels, where fluid stops or starts or balances because of a gate 

movement. Some hydraulic engineering applications where such a 

local inertia has to be taken into account are surge tanks, water ham-

mer and locks. 

IV-2.1.2 When the velocity maintains the same intensity but changes 

its direction. In this case the inertia force is due to the centrifugal 

acceleration. 

For example, in a periodic gravity wave in infinite depth, 

the intensity of the velocity at a given point is a constant but its direc-

tion revolves continuously at all points. (Figure IV -1). 

IV-2.1.3 

WAVE TRAVEL 

FIGURE IV-1 

PERIODIC GRAVITY WAVE IN DEEP WATER 

The change of velocity with respect to time is 
exerted in direction only. 

When the velocity changes at a given point both in intensity 

and direction. Some examples of this case are: 
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IV -2. 2 

Turbulent flow (This important case is fully develop
ed in Chapters VII and VIII) 

Alternate vortices 

Displacement caused by a ship in motion 

Bore and tide in an estuary 

Periodic gravity waves in shallow water 

MATHEMATICAL EXPRESSION OF LOCAL INERTIA 

The mathematical expression of the inertia forces'.caused 

by a local acceleration is given by the change in the velocity of the 

translatory motion with respect to time only. Assuming that the velo-

city is constant with respect to distance, the inertia force is equal to 

dV 
p dt 

av 
= p~ of which the components along the three axes OX, 

OY and OZ are 
. au av aw 

respectively: p at' p a t ' and p "'1ft . 

IV -3 CONVECTIVE ACCELERATION 

Convective acceleration characterizes any non-uniform 

flow, i.e. when the velocity at a given time changes with respect to 

distance. It is sometimes called field acceleration. 

Convective acceleration results from any linear or angular 

deformation, or from a change in the rotation of fluid particles, im-

posed by external forces F. 

IV -3. 1 EXAMPLES 

In a convergent pipe, it has been seen that the velocity of 

a fluid particle tends to increase as the streamlines converge. That 
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is, the velocity of the fluid particle increases with respect to space. 

This is a positive convective acceleration. The fluid tends to resist 

this acceleration by convective inertia. 

In a divergent conduit, the velocity decreases and the fluid 

tends to continue its motion with the same velocity because of its inertia. 

The applied forces cause a negative convective acceleration. 

Expansion or contraction of a compressible fluid is the sum 

of linear deformations and also results in corresponding inertia forces. 

In all these examples considered, components of velocity 

keep the same direction but their intensity changes. 

IV-3.1.2 Mathematical Expression 

It has been seen that the linear deformation velocity com-

ponents are: 

au dx ax 

a v d --ay y 

~dz a z 

Two -dimensional 
motion 

Three -dimensional 
motion 

Hence the corresponding accelerations are: au dx a v d y 
a X d t ' 8 y d t ' and 

dz awdz dx _dy 
8Z d t . Introducing u = d t , v - d t, and w = d t, and multiplying 

by the density p, the corresponding inertia forces become: 
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au 1 au 
2 

pu-- = 2 p ax ax 

av 1 av 
2 

pv-- = 2 Pay ay 

aw 1 aw 
2 

pw-- = 2 Paz a z 

It should be noticed that the last group of expressions, 

which may be written +x (p ~2 ) , etc., shows that this inertia 

force is equal to the variation of kinetic energy with respect to space 

along the three direction axes OX, OY, and OZ, respectively. 

IV -3.2 THE CASE OF SHEAR DEFORMATION 

IV-3.2.1 Example 

In a bend, where the fluid particles are angularly deformed, 

the fluid paths are curved and because of its inertia, the fluid tends to 

continue along a straight line. This causes a centrifugal force propor-

tional to the change of direction which is imposed by the applied forces. 

It is possible for the velocity of a fluid particle to keep the 

same intensity along its path, but with a change in direction. This is 

the case of free vortex motion. 

IV-3.2.2 Mathematical Expression 

It has been seen that the velocity components of angular 

deformation for a two-dimensional motion are: 
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l (au t av) ldX 
2 a y ax 

Hence, as in the previous case, using the substitutions 

v = *, the corresponding inertia forces become: 

l v[au+av) 
2 p ay ax 

l u rau+avl 
2 p ay ax 

IV -3. 3 THE CASE OF A CHANGE OF ROTATION 

IV-3.3.1 Example 

d.""<: 
u = dt and 

In the entrance to a pipe (Figure IV -2), because of the 

change in friction forces, there is a variation of rotation of the fluid 

particles. Hence there are inertia forces corresponding to the natural 

resistance of the fluid to change its rotational motion. In a uniform 

pipe, the rotation of particles exists but there is no change in rotational 

intensity and the corresponding acceleration is zero. 
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IV-3.3.2 

.,,.', .. 

.,,~~~,, 1f;i;':;,,,,;,;y;;!'t!/N!(;!~~~ 
IRROTATIONAL 

MOTION 

FIGURE IV-2 

ROTATIONAL 
MOTION 

ZONE OF ACCELERATION OF ROTATION 

Mathematical Expression 

As in the two previous cases, since 

1 (av_au)dx 
2 ax a y 

are the velocities of the components of rotation in a two-dimensional 

motion, the corresponding inertia forces are obtained equal to: 

l 
zPU 

('~- ~] ax a y 

(~-~) ax a y 
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It has been shown that it is possible to assume that the 

motion is irrotational when friction effects are negligible. (See II-4. 1). 

It is evident that the same conditions lead to neglect of rotational 

inertia forces. 

IV-4 

IV -4. 1 

GENERAL MATHEMATICAL EXPRESSIONS OF INERTIA 

FORCES 

In the general case both local acceleration and convective 

acceleration occur at the same time. The most simple example is 

when a fluid oscillates in a non-uniform curved pipe. Hence, in the 

-general case, v and its components u, v, and w are functions of 

both time and space coordinates: 

u (x, y, z, t) 

v = f (x, y, z, t) v (x, y, z, t) 

w (x, y, z, t) 

-- - ~dt+ ~dx The total differential of v being dV = + a t a x - -av 
dy + 

av 
dz, the total acceleration is given by the total differ-ay: az -entia! of v (or its components u, v, w) with respect to time: 

- - -dV av 
+ 

av dx 
+ 

av ~ + 
av dz 

dt = at ax dt ay: a-z dt dt 

du = au 
+ 

au dx 
+ au dy au dz 

dt at ax dt ay dt + liZ" dt 

dv av 
+ 

av dx 
+ 

a v dy 
+ 

av dz 
dt = at ax dt ay: dt liZ" dt 

dw aw +~ dx 
+ 

aw dy 
+ 

aw dz 
dt = at dt ay: dt az dt a x 

104 

- ' 



' 

Introducing u 

plying by the density p 

eli pat + 

(a v pat + 

(aw pat + 

Local 
Acceleration 

Terms 

dx -~ and = dT' v - d t ' 

the inertia forces are 

u au 
ax 

u av 
ax 

aw u 
ax 

+ au + v 
ay 

w 

+ a v + v 
a Y 

w 

aw + v 
a Y 

+ w 

Convective 
Acceleration 

Terms 

dz 
and multi-w = dt' 

obtained as follows: 

~) az 

~) a z 

~) a z 

These expressions may be modified to give more expres-

sive forms. This is the purpose of paragraphs IV -4.2 and IV -4. 3. 

IV -4. 2 Following the similar procedure used in the study of the 

elementary motions of fluid particles {Sec. II-5. 2), that is, adding 

and subtracting 1 a v 
- p v--
2 ax 

and 1 a w 
- p w--
2 a x 

to the first line 

above, gives the following expressions which substantiate the previous 

physical considerations: 

[
au au 

Pm-+urx 
'--v--' 

Local ac
celeration 
resulting in 
a change in 
translatory 
motion 

Accelera
tion in Linear 
Deformation 

Acceleration in 
Angular Defor

mation 

1 (au + zw az - aw) ax 

~)] 
Acceleration in 

Rotation 

Convective Acceleration Terms 
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1 Then, adding and subtracting 2 
1 

to the second line, and 2 au pu--
8 z 

will give two similar expressions. 

and 1 
2 

pW 

pv 

1 and 2 
ou 

pu ay 
to the third line 

IV -4. 3 Alternatively, it is often useful to transform the accelera-

tion terms as follows in order to emphasize both the kinetic energy terms 

and the rotational terms. Adding and subtracting p (v ~ + w ~) 
ax ax 

to the first line, p (u ~ ~ + w ~ ;) to the second line, and 

p ( u ~ ~ + v ~ :) to the third line gives the following expre s sian, 

valid along the OX axis: 

- w ow) 
1lX 

ou ov ov ow 
w "llZz + v "lrxx - v .,.,.-- + w .,..--ox oX 

and two similar expressions for the two other directions OY and OZ. 

This above expression may be written: 

[ 
ou 

P at ( au ow)] 
w rz - crx: 

Since: 

2 
1 av d = 2 ---ax an 

av 
v--au 

u--
aw w--
8 X 

= 
2 

1 a w 
2--ax· 8 X ox 

u~+v~+w~ oX oX 0 X 

Moreover, introducing the coefficients of the rotational vector 

2'1 = (~ a z ~) a x 

zs = (~ ~) ax a Y 
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, 

yields finally as an expression for the inertia forces - along the OX 

axis 

Similarly, it may be found that the inertia forces along the OY and OZ 

axes are: 

P [ ~ ~ + -iy ( 'i2 
) + 2 ( s u - s w) 1 

d~~ + -/z (i2
) + 2( sv- 71ul] 

These three expressions may be written vectorially in a 

more concise manner as follows: 

( -av 
pat + 

Local 
acceleration 

grad 

Kinetic energy 
term 

-V X curl 

Rotational 
term 

Convective acceleration 

It has to be noticed that the convective inertia term 

p 'V 

a v2 

p ax -2-

a y2 
p ay -2-

a v2 
p azz 

is, in fact, the variation with respect to space of the kinetic energy 
v2 

p - 2- of the particle. 
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IV -5 

IV -5. 1 

IV-5.1.1 

ON SOME APPROXIMATIONS 

CASES WHERE THE LOCAL ACCELERATION IS 
NEGLECTED 

A rigorous steady motion never exists. There is always a 

beginning and an end. However, many motions in hydraulics are 

actually very close to being steady during a given interval of time. In 

-this case, since V does not vary with time, the corresponding inertia 

term is zero. (The very important case of turbulent motion 

will be studied in Chapters VII and VIII.) 

However, there exist many unsteady motions in hydraulic 

engineering in which the variation of velocity with respect to time is 

studied without taking into account the local acceleration and the cor-

responding inertia terms. 

This occurs when the velocities are slow and their vari-

ations with time are very slow. For instance, in the case of a periodic 

motion in which the period T is very long: 
av 

at- Hence 

av 
p aT would be negligible in comparison with other forces. 

are: 

Some particular cases where this approximation is valid 

Flow in a porous medium: variation of the ground 

water table with respect to time. 

Flood wave in a river. 

108 



Variation of level in a reservoir because of the 

variation of the upstream river flux, the spillway and 

bottom outlet control, and turbined discharge. 

Emptying of a basin by a small valve. 

In all these cases, the flow is considered as a succession of steady 

motions and calculated as such without taking account of local inertia . 

IV-5.1.2 . Example 

As an example of unsteady motion analyzed as a steady 

motion, the variation of level in a basin is studied. (Figure IV -3). 

FIGURE IV-3 

UNSTEADY MOTION CONSIDERED AS 

A SUCCESSION OF STEADY MOTION 

Consider the emptying of a rectangular basin of horizontal 

cross-sectional area A, The volume of water above a small hole 

of area S is A times z. The 
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variation of z as a function of time is given by the differential equation 

A dz = Q dt where Q = CdSV, Cd being the coefficient of discharge 

and V being given by the formula of Torricelli: V = ..J 2 g z . The 

Torricelli formula is valid only if the local inertia is negligible. 

Introducing the value of Q = C dS .f2gZ in the above 

equation and integrating gives the total time required to empty such a 

basin, where z 
0 

is the initial depth: 

T = 2A 

I£ S were large and A small, it would be necessary to take account of 

the local inertia to calculate T. 

Another similar example, previously cited, is that of the 

variation of level in a reservoir of horizontal section S (z} because of 

the variation of the upstream river flux. The corresponding calculation 

of the economical height of the dam, the number of turbines and the 

spillway capacity are deduced by this method: 

Q (t} c.t = S (z} C.z + Qt c.t + Q (z} c.t + f (S} C.t s 

Upstream Change of Turbined Volume over Loss by 
Influx of Level in Volume the Spillway Evaporation 
the River Reservoir 

no 



IV -5. 2 

IV-5.2.1 

CASES WHERE THE CONVECTIVE ACCELERATION IS 

NEGLECTED OR APPROXIMATED 

Slow Motion 

The local inertia term is proportional to the velocity V, 

i.e. it is a linear term, while the convective acceleration terms are 

quadratic: proportional to v 2 
(or a product u

2
, v

2
, w

2
, uv, uw, 

vw). Hence, since the convective acceleration introduces a quadratic 

term, the general equation of momentum is non-linear. 

It is well known that it is easy to mathematically solve 

many linear differential systems of equations. But it is often difficult 

to solve a non-linear system. This is the chief cause of difficulty in 

fluid mechanics. For this reason, it is helpful to know when it is 

possible to neglect this quadratic term. 

When V tends to zero, a quadratic term proportional to 

v2 
tends to zero more rapidly than a linear term proportional to v. 

(Figure IV -4). Hence, in practice, when V is small, v 2 is negligible 

and the convective inertia term is negligible in comparison with the 

other terms expressing the local inertia and applied forces. 

Some examples are: 

Periodical gravity wave theory (1st order of 

approximation). 

Flow in a porous medium, which obeys the linear 

law of Darcy. {Such a kind of motion is defined only by 
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IV-5.2.2 

v 

FIGURE IV-4 

QUADRATIC TERMS BECOME NEGLIGIBLE 

WHEN V TENDS TO ZERO 

an equality of applied forces since the local acceleration 

is negligible, also.) 

Motion of a small sphere in a viscous fluid (Stokes' 

formula). 

Solution Given by a Series 

Sometimes partial effect of the convective acceleration is 

taken into account by the use of an approximate solution given by anum-

ber of terms of a series. (Example: gravity wave theories to the sec-

and order, third order, etc. of approximation; laminar boundary layer 

theory; etc.) 
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IV-5.2.3 Irrotational Motion 

Another method to take account of a partial effect of the 

convective acceleration is by the assumption of irrotationality when 

the friction effects are negligible. This point has been developed and 

will be more fully developed in later chapters. 

IV-5.2.4 :Simplification of Some Terms 

Sometimes only some terms of the convective acceleration 

may be neglected. The case of a two-dimensional boundary layer on a 

flat plate is given here as an example (Figure IV -5). This example 

is particularly helpful in understanding how the mathematical simplifi-

cations may be based on physical considerations. Hypothesis: u is 

large in comparison with v; au 
ax is large in comparison with ~ ; ax 

is small in comparison with ~ ~ ; hence, the two-dimensional 

convective inertia components: 

small + 

au + ax 

small x large 

v ~) fly 

large x very small + small x small 

v ...£2) fly 
...£2 ax + 
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become more simply P(u~ + v~) ax ay since av 
u-ax and 

a v v ay are negligible. 

ofajet. 

IV-5.2.5 

Similar approximations are made to analyze the development 

y 

v 

FIGURE IV-5 

INTRODUCTION OF SIMPLIFYING ASSUMPTIONS 

IN THE THEORY OF DEVELOPMENT OF A 

BOUNDARY LAYER 

Linearization of Quadratic Terms 

Linearizing the quadratic terms consists, for instance, of 

2 
substituting for the quadratic terms: y = A V or y = A

1 
V d V, the 

lineartermsas: y
1 

= BV(+cst) or y
2 

= B 1 V or y
2 

= B 2 dV, 

such that: 
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B = mean value of A V (Figure IV -6) 

= 

= 

y 

mean value of A
1 

d V 

m~an value of A
1 

V 

BV 

RANGE OF VALIDITY 

______ j 

FIGURE IV-6 

LINEARIZATION 

This method is applicable when V or d V varies within a 

small range; otherwise, the value of B, B
1

, B
2 

must be changed and 

the problems solved step by step. Surge tank stability calculations, 

laminar flow stability study and motion of a sphere in a viscous fluid 

{Oseen's theory) are some examples where this method is used. The 

Oseen theory is an attempt to improve the Stokian theory for the flow 

around a sphere by taking into account some linearized effects of con-

vecti ve inertia. 
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IV -1 Consider an unsteady two-dimensional flow where the velocity 

components at point x = 1, y = 1 at time t = 0 are u = 1 ft/sec, v = 2 ft/sec 

and at time t = 1 sec, u = 2 ft/sec, v = 3 ft/sec. 

Moreover, at time t = 0, the velocity components at point 

x = 2, y = 1 are u = 1. 2ft/sec and v = 2. 4ft/sec and at point x = 1, 

y = 2 they are u = 1. 1 ft/sec, v = 1. 8 ft/sec. Calculate the value of the 

total acceleration by assuming that the variations of velocity with time 

and distance are linear. 

Answer: 

~~ = 1. 72 ft/sec
2 

IV -2 Calculate the total variation of temperature of a train which 

travels 300 miles a day in the northern direction. The mean daily varia

tion of temperature is - 2° F per 1000 miles. The daily variation at a 

given location is 4 sin 
2
;t °F where T = 24 hours. 

Answer: 

dT 
crt = 'IT 'ITt 1 

3 cos T2- 40 
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IV-3 In the case of a progressive acoustic wave in a pipe, such 

that 

u = a sin ~ (x - C t) 

calculate the ratio of convective inertia to local inertia. 

IV-4 Consider a basin such as shown in the following figure, where 

the particle velocity at the orifice (z = 0, x = 4 feet) is V = ~, 

z = 71 is the height of the free surface above the orifice. The horizontal 

area of the basin being A= 4 ft
2

, determine: 

l) The variation of the free surface with respect to time, 

i.e., the function 71(t) at time t = 0, 71 = 20 feet. The 
0 

local inertia will be neglected for this calculation. 

2) The local inertia at point x = 3, z = 0, i.e., in the con-

verging section (p = 1. 94). 

3) The convective inertia at the same point. 

4) Is the neglection of the local inertia a valid assumption? 

Explain. The friction will be neglected. 

5) When a constant discharge q = 1 ft
3 
/sec is poured into 

0 

the tank, establish the function 71 (t) ( 71 = 20 feet) 
0 

and 

determine 71 when t- co. 

ll7 



Answer: 

T 

z 

AREA: 
4tt2 

4>= 0.2 ft 

~L X 

~~--~------------~ 

~r 

[
141- t] 2 

1) '1 = 3 1. 7 feet 

au 1 3 
2) pat = 0.16 1bs ft 

3) pu~~= l.78;T"J2g'1 1bs/ft
3 

4) Local inertia << convective inertia at any time, 

(It can be found that they would be equal when '1 = 0. 014 

feet, but the equations are no longer valid.) 

5) '1-15.7 ft when t-oo 

t = ZA 
Bz 
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where 

IV -5 Determine the convective inertia terms which can be neglected 

in a jet. 

IV-6 The influx of discharge into a reservoir is defined by the 

equation 

Q(t) ft
3
/sec = 10,000 [ 1. 5 - sin kt] 

2rr 
where k = T and T is a period of one year. The horizontal area of 

the reservoir is defined by 

A(z) = 10,000z
2 

The top of the spillway for flood discharge is located at an elevation 

z = 100 feet and has a discharge capacity 

3 
Qft/sec=Ct[z 

s 
100] .Jzg (z- 100) 

where the coefficient of discharge C = 0. 5, and the length of the spill-

way -!, = 100 feet. The turbined discharge is constant and equal to 7000 

ft
3
/sec. 

Determine the variation of the level of the free sur.face in 

the reservoir as a function of time and the maximum discharge over the 
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spillway for each year following time t = 0. The maximum possible 

discharge over the spillways will also be determined. At time t = 0, 

one will take the free surface elevation at z = 30 feet. 

IV-7 Consider a periodic two-dimensional oscillation in a rectangular 

tank (seiche) of length t and depth d (t >> d). The period of oscillation 

is T = ~ . The horizontal velocity component u is assumed to be a 
,rgd 

constant along a vertical and is a function of time only. The equation of 

the free surface is (a << d): 

h = dtacosmx coskt 

2rr 
m = L' L = T,rgd, k = 2rr 

T 

Determine the maximum value of u and w and the location where they 

are maximum. Some simplifying assumptions will be accepted for these 

calculations. Determine the expression for the local inertia and the 

convective inertia, their maximum values, and the ratio of the maximum 

value of convective inertia to the maximum value of the local inertia. 

Present a criterion permitting the evaluation when the convective inertia 

is negligible. z 

-
h d 

X 

1 = J..._ 
2 
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Answer: 

u 
max 
=a~ at 

t 
X= 2 

w = ka at x = 0, t, and z = d 

IV -8 

max 

lp u ~~I 
max 

lp ~;I 
max 

a 
= d 

Demonstrate that 

du au ( ) a - = -+2 WT]+V~ +
dt at ax 

d f . d . 'l . . f d v d d w an 1n s1m1 ar express10ns or dT an d t . 

IV-9 Expression the components of acceleration Ar, A 8 , Az 

referring to a cylindrical system of coordinates. 

Answer: 

r -direction: 

A 
r 

av 
=--r+v 

at r 

8 -direction 

av 
r --ar + 
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IV -10 

z-direction 

A 
z 

av 
z ar + + v z 

av 
z 

""""ilZ 

The components of velocity u, v, w are now defined in a 

natural system of coordinates, i.e., the axes OX and OY are defined 

from a given point along and perpendicularly, respectively, to a stream-

line. Give the components of acceleration. In a second case, where it 

will be assumed that paths and streamlines are different, the axis will 

be defined at a given point with respect to paths. Then give also the com-

ponents of acceleration (R is the radius of curvature of the path). 

Answer: 

l) av + a (v
2;z) 

and 
v2 

at ax R 

au + a (v
2
;2) av + 

v2 aw 
8t ax at R , at 2) 
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CHAPTER V 

APPLIED FORCES 

v -1 INTERNAL AND EXTERNAL FORCES 

Considering an isolated elementary mass of fluid, the 

applied forces consist of internal and external forces. 

v -1. 1 INTERNAL FORCES 

Internal forces result from the interaction of the interior 

points of the considered mass of fluid. According to the principle that 

action equals reaction, these internal forces balance in pairs and their 

sum and total torque is rigorously zero. (Figure V -1). However, it 

will be seen in Chapter XIII that the work of these internal forces is not 

zero, although their sum is zero. It is for this reason that it is impor

tant to mention their existence. 

v -1.2 EXTERNAL FORCES 

The forces on the boundaries of the considered particle of 

fluid, so-called surface force, and the forces which are always acting 

in the same direction on its mass, so-called body or volume forces, 

are not balanced. These are the external forces. 
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V-1.2.1 

'" ' / • I .. 

I / 

FIGURE V-1 

ACTION EQUALS REACTION: INTERNAL 

FORCES BALANCE IN PAIRS 

Surface Forces 

Surface forces result from forces acting from outside on 

the limits of the considered volume. They are caused by molecular 

attraction. They decrease very quickly away from the boundaries of 

the considered particle of fluid, and their action is limited to a very 

thin layer which, in practice, according to the assumption that the 

fluid is a continuous medium, can be considered as infinitesimally thin 

and blended with the surface of the fluid particle. 

These surface forces are, in practice: 

Normal forces -- due to pressure 

Shearing forces -- due to viscosity 

These two kinds of forces also exist within the particle, 

but are always balanced in pairs and their sum is zero, as previously 

noted. The work of these internal forces is not zero. For example, 
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the head loss in a pipe results from the work of the internal viscous 

forces. This question is also developed in Chapter XIII. 

V -1. 2. 2 Body Forces 

Body forces result from an external field (such as gravity 

or magnetic field) which acts on each element of the considered volume 

in a given direction. For this reason, they are called body or volume 

forces. Except for some rare cases, for example the study of the 

motion of a fluid metal in a magnetic pump, only gravitational force 

has to be considered in fluid mechanics. It is known that this gravita

tional force is considered as acting in the same fixed direction, except 

in some studies of ocean currents where the gravity acceleration must 

be considered as radial. 

v -1.3 REMARKS ON EXTERNAL AND INTERNAL FORCES 

The distinction between external and internal forces is not 

restricted to the study of an elementary particle of fluid. For example, 

the theory of hydraulic jump, the head loss in a sudden enlargement in 

a pipe, and the Bernoulli equation in a pipe can be studied or demon

strated by taking into account the difference between external and in

ternal forces (or the work of these forces) in a definite volume of fluid. 

This question will be dealt with in Chapters XI and XIII. 

Other forces may be considered as applied external forces. 

Two examples are: 
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Capillary forces due to the difference of molecular 

attraction between two media -- of particular importance 

in free surface flow through a porous medium; and 

Inertia caused by the Coriolis acceleration due to 

the earth's rotation -- when tide motion, sea currents and 

wind are concerned. 

These two kinds of forces will not be dealt with in the following work. 

V-2 GRAVITY FORCES 

Similar to the inertia forces, the volume forces are pro-

portional to the mass of the fluid and they are proportional to the ac-

celeration caused by an external field.· Hence, in the case of gravity 

action, the volume force per unit of volume is simply equal to its 

weight: GJ = p g, where g is the acceleration due to gravity. 

This force is independent of the motion and is the same in 

statics or in any viscous or turbulent motion, and is equal to the 

weight of the elementary fluid particle: p g dx dy dz. 

The gravity force is expressed in a differential form in the 

three axis system OX, OY, OZ (the vertical axis OZ being posi-

tive upwards) as follows: let X, Y and Z be the three components 

of gravity force along the three axes OX, OY, OZ. It is evident that 

X and Y equal zero. The three components X, Y and Z of gravity 

force are: 

X = 0 

y = 0 

z = - pg 
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a 
which becomes, vectorially: since X = "llX ( p g z) = 0 

and Y = 
a ay (pgz) = 0. 

As far as the .motion of a gas is concerned in engineering 

practice, the gravity force is neglected (except, for example, in 

meteorology or in the calculation for chimneys and ventilation openings, 

where the phenomena are influenced by the variations of gravity forces 

due to density changes}. 

v -3 PRESSURE FORCES 

Pressure forces result from the normal components of the 

molecular forces near the boundary of the considered volume. The 

pressure intensity at a point is obtained by dividing the normal force 

against an infinitely small area by this area. 

v -3. 1 PRESSURE INTENSITY, PRESSURE FORCE AND DIREC

TION 

The pressure intensity is a scalar quantity which is abso-

lutely independent of the orientation of this area. This may be demon-

strated by considering a triangular two-dimensional element in a fluid, 

at rest. (Figure V -2). 

Since there is no motion, inertia forces and viscous forces 

are zero, and the only forces are gravity and pressure. The projec-

tions of these forces along the OX and OY axes yield the equalities: 

p dy - p ds sin "' = 0 
X 

p dx - p ds cos <> = p g dx dy 
y 2 
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y 

Px L dy 

X -'------- '---"'T'"---'--~· 

L':.J 
FIGURE V-2 

PRESSURE INTENSITY IS INDEPENDENT 

OF ORIENTATION 

Introducing dy = ds sin a, dx = ds cos <> , 

ing 
dx dy 

p g 2 (being of the second order of smallness), 

p = Px• p = p . 
y 

Hence, p = p = p . 
X y 

and neglect-

one obtains 

Since "' is any arbitrary angle, the pressure is seen to 

be the same in all directions. A similar demonstration is possible for 

the three -dimensional elements of a fluid. 

However, it is evident that the gradient of pressure force 

(which is a vector) changes with direction. In the same way, the force 

caused by pressure against an area (which is a vector) changes direc-

tion as the normal to the considered area changes direction. 
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v -3.2 RATE OF PRESSURE FORCE PER UNIT OF VOLUME 

Consider an elementary fluid particle (dx dy dz) (Figure 

V -3). The pressure force due to the external adjacent fluid particle 

acting against the side ABC D is: p x Area ABC D = p dy dz. 

The pressure force against the other side acts in the opposite direction 

and may be written: 

- (p + ~ ~ dx ) (Area E F G H) = - (p + ~ ~ dx) dy dz 

Hence, the difference of pressure forces acting in opposite directions is: 

p dy dz - (p + ..£...£ dx) dy dz = - ..£...£ dx dy dz ax ax 
Similarly, the pressure force differences acting in the OY 

and OZ directions are - a p dx dy dz and - ...£..E. dx dy dz. ay az 

c G 

B 
~p 

z p I p+1Xdx - I 

'o 
~---- --- H 

/ 
/ 

/ 
X 

A E 

y 

FIGURE V-3 
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Hence, the rate of change of pressure force per unit of 

volume is given by the three components - ~ ~ , 

which can be written vectorially: - grid ( p). 

-~ ..i.E a y ' and - a z ' 

V-3. 3 FLUID MOTION AND GRADIENT OF PRESSURE 

It is interesting to note that the motion of the fluid particle 

does not depend upon the absolute value of p, but only upon the gradi-

ent of p. Consider the motion in a tunnel as shown in Figure V -4. The 

motion depends upon the difference between the upstream and downstream 

levels only. This property is often used to study motion under pressure 

in a scale model. However, cavitation occurs if p falls below a 

critical value. 

PRESSURE LINE 

FIGURE V-4 

THE MOTION DOES NOT DEPEND ON THE ABSOLUTE 

VALUE OF THE PRESSURE BUT ITS GRADIENT 
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v -3.4 PRESSURE AND GRAVITY 

The total force due to the pressure force and gravity force 

per unit volume is: 

The sum of these two linear quantities (p + p g z) is a con

stant in hydrostatics since p - p A = - p g z where p A is a constant 

external pressure (atmospheric). This property is also veri-

fied in a cross section of a uniform flow as in a channel or in a pipe, 

or more generally when the curvature of the paths is negligible or the 

motion is very slow (see X-2. 1. 3). Hence the sum (p + pg z) may 

often be conveniently replaced by the single term p~': p~' = p + pg z, 

a o* such that p~' = est or ~ = 0, or grid p'~ = 0. OZ is parallel 

to the considered cross section, i.e., in practice OZ being most often 

vertical. While .1'._ is known as the pressure head, 
pg 

is called the 

piezometric head. 

In the general case, pressure and gravity forces have a 

total sum which varies with distance: grid p'' and its components 

V-4 

v -4.1 

are different from zero. 

VISCOUS FORCES 

MATHEMATICAL EXPRESSION FOR THE VISCOUS 

F'ORCES 

Shear stresses are present because of fluid viscosity. 

This resistence is caused by the transfer of molecular momentum. 
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The friction force is assumed to be proportional 

to the coefficient of viscosity J.l and 

to the rate of angular deformation: av = fl. an· T 

Consider a two-dimensional element of fluid (Figure V -5}. 

au 
The friction force on the side AB of length dx is: T dx = fl. ay dx. 

au Since the velocity at C is ( u + a y dy}, the friction force on the 

side CD is: 

h + ..h_ dy} c1x = ., _a_ ( u + a u dy} c1x = 
ay ray ay 

c~==-..... o y 

L. u 

FIGURE V-5 

TWO-DIMENSIONAL ELEMENT OF FLUID 

a2 
u a---z dy c1x. 

y 

These forces are in opposite direction, since if the external 

particle G H CD against the side CD acts in the OX direction, the 

external particle ABE F against the side AB is pushed in the same 

direction OX by the particle ABC D. Consequently, the particle 

ABEF acts in the opposite direction. Hence the difference of these 

friction forces is: 
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~dxd ay Y 

Dividing by dx dy, the friction force per unit of area is: 

b... 
a Y 

More generally, for a three-dimensional incompressible 

fluid, it is possible to demonstrate that the friction force components 

per unit of volume are: 

(a 
2

u a
2

u 
fl. a x2 + ay2 + 

(a 
2

v a
2

v 
fl. a x2 + 

ay2 
+ 

(a 
2

w a
2

w 
fl. a x2 + ay2 

+ 

They are written vectorially: 

a
2
u) 

az2 
= 

a 
2
v) 

a z2 
= 

a
2w) 

az2 
= 

2 
fl. \J u 

2 
fl. \J v 

2 
fl. \J w 

,..,2-
fl v v 

V-4. 2 MATHEMATICAL CHARACTERISTICS 

Since fL is considered as a constant, the momentum 

equation is a second order differential equation because of friction 

forces. In reality, the coefficient of viscosity depends upon tempera-

ture, which depends on friction force in return; however, this vari-

ation of temperature caused by friction is too small to infiuence the 

motion by variation of the coefficient of viscosity. This is not always 
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the case, particularly when an external source of heat causes a very 

high gradient of temperature, as in a heat exchanger of an atomic 

pile. Then it is necessary to consider fl. as a variable with respect 

to distance. The viscous term becomes non-linear. 

V -4. 3 APPROXIMATIONS MADE ON VISCOUS FORCES 

It has been shown physically that sometimes it is possible 

to consider friction effects as negligible. (Chapter II, II-4. 1. 2}. 

From the above demonstration, it may be seen that it is 

possible to neglect friction forces when the second differential of speed 

2-( \I V } is small. This is often so out of the boundary layer where the 

fluid motion is similar to that of a perfect fluid. 

Sometimes it is possible to neglect only one part of the viscous 

friction terms. For example, as explained in paragraph II-5. 2. 4, in a 

a 2v a 2v two-dimensional laminar boundary layer or in a jet, 8';2" and Y 
may be neglected since v is small in comparison to u (see Figure 

IV 5} a 2u b 1 d . ~ u . 11 - , and also "0? may e neg ecte s1nce ~ 1s sma . 
x 2 2 

Hence, only the term ~ and the corresponding friction 
2 

a y2 

force a u has to be taken into account. 
fl. ayz 

V-5 

v -5.1 

SOME THEORETICAL CONSIDERATIONS OF SURFACE 

FORCES 

A GENERAL EXPRESSION FOR SURFACE FORCES 

Surface forces, as previously seen, consist of pressure 

force and friction force. These surface forces may be introduced 
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without taking account of their physical nature. It will be seen that the 

advantage of such a method of expressing the surface forces lies in its 

applicability to any kind of motion, e. g. perfect, viscous or turbulent, 

compressible or incompressible. However, the values of these sur

face forces are expressed differently when their physical nature is 

taken into account. 

V-5. 2 THE NINE COMPONENTS OF THE EXTERNAL FORCES 

Consider an elementary mass of fluid in the form of a 

cube; its edges are parallel to the three coordinate axes OX, OY 

and OZ, as shown in Figure V -6. 

On each side of this elementary cube, surface forces may 

be completely defined by three components parallel to the three co

ordinate axes. Two of these components are shear stresses while 

the third is a. normal stress. 

Since a cube has six sides, 18 components have to be con

sidered, These components are defined with the help of two subscripts. 

cr are the normal forces and T are the shearing forces. The first 

subscript x, y, or z refers to the axis normal to the considered 

side. The second subscript x, y or z refers to the direction in 

which the force acts. 

The pairs of parallel forces ·acting on two opposite sides 

of the cube act in opposite directions, and their difference is obtained 

by a simple partial derivatives in the direction of the distance between 

these two considered sides. 
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FIGURE V-6 

c 
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A 
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/ 

E 

Txz + 

NOTATION FOR SURFACE FORCES 

G 

H 

o<:cy 
'xy + ""bX dx 

Hence, the external forces may be defined by a tensor of 

rank two: 

IT T T 
XX yx zx 

T IT T xy yy zy 

T T IT 
xz yz zz 

These forces are completely given by Table V -1. 

Now, the addition of all the forces per unit volume acting 

in the same direction yields: 

136 



..... 
VJ 

""' 

TABLE V-l 

! ! ---· I 

Stresses Applied to the Side Normal to the Axis 

OX OY oz 

On the side 
ABCD EFGH BFGD AEHC AEFB CHGD of area 

(See Figure V-6) 
dy dz dy dz dx dz dx dz dx dy dx dy 

a<r aT aT 
OX XX 

(T + ~ dy) 
zx 

(T ( (T + """""fiX dx) T T ( T + ---az dz ) 
XX XX X yx yx y zx zx z 

In 

the 
aT a<r aT 

Direction OY T (T + Yx dx) (T (<r + ~ dy) T ( T + ---aP- dz ) xy xy x yy YY Y zy zy z 
of 

aT aT a<r 
oz T (T + XZ dx) T (T +a¥ dy) (T (<r + zz dz) xz xz """"ti"X yz yz y zz zz ---az 



In the OX direction: ( a o- xx 
+ 

a Trx 
+ iJT zx) 

ax &y az 

( OT 00" 
iJT ) xr + II + zr 

ox &y az In the OY direction: 

( OT xz 
+ 

o-r rz 
+ a o- zz) 

ax ay az In the OZ direction: 

/ 

V-5. 3 THE SIX COMPONENTS OF LAME 

On the other hand, consider the torque of a fluid particle 

about one edge (for example, A in Figure V -7). 

The total sum of the torque caused by the shearing stresses 

is: 

T xy ( dy dz ) dx - T yx ( dz dx) dy 

This torque is equal to the mass times the square of the 

radius of gyration ( d R )2 times the square of the angular velocity 

2 
( w ) , which may be written: 

2 2 
p dx dy dz ( d R) w 

Since dR is infinitesimally small, having the same order 

as dx, dy and dz, ( dR )
2 

is of the second order of smallness and 

the speed of gyration becomes infinite, which is physically impossible. 

Hence, the total torque must be zero. This condition is possible only 

when T = T 
xy yx 
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T = xz 

FIGURE V-7 

~Tyx 
Tyx + -- dy 

~y 

~---... A 

Similarly, it may be shown that T 
yz = and 

T 
zx 

Hence, the nine components of the tensor of external 

force are reduced to the six so-called components of Lame. 

v -5.4 

v -5. 4. 1 

(!" 
XX 

T xy 

T XZ 

T xy 

(!" 

YY 

T yz 

T XZ 

T yz 

(!" zz 

/ 

VALUE OF THE LAME COMPONENTS IN SOME PARTI-

CULAR CASES 

In the case of a perfect fluid, the shearing stresses are 

zero and the normal forces become simply the pressure forces: 
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()" = ()" = ()" = - p 
XX YY zz 

T = T = T = 0 
xy yz zx 

V-5.4.2 In a viscous incompressible fluid, it is possible to demon-

strate that the normal forces ( o- ) are the sum of the pressure force 

and a viscous force proportional to the coefficients of linear deformation: 

()" = -p + 2 au 
XX fL ax 

()" = -p + 2 a v 
YY fL a Y 

()" = -p + 2 aw 
zz fLaz 

The shearing stresses T are functions of the coefficients 

of angular deformation: 

T = fL (~ + .£2) yz a Y a z 

Txz = fL (~ + ~) a z ax 

Txy = fL (~ ax + ~) ay 

Now, introducing these values in the sum of forces acting 

in the same direction, as for example in the OX direction, 

aT xy 

ay 
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it is easy to verify that the formulas obtained previously are found: 

V-5.4.3 In the case of a viscous compressible fluid, the shearing 

stresses are the same as in the above case, but the normal forces have 

to take into account the change of volume of the fluid particle. It may 

be seen that: 

<Txx = -p + (
au + a v + a w) 

A ax a y a z 

Two similar relationships are easily deduced for 

+ 

<T and 
YY 

(T 
zz 

A is a second coefficient of viscosity for a gas. From the kinetic theory 

of gases, it may be shown that for a monatomic gas: 3A + 2 flo = 0. 

In practice this relationship is considered accurate enough for any kind 

of gas. 

Now, introducing these values in the sum of forces acting 

in the OX direction yields: 

(
a (T 

XX 

ax 
aT ) xz ~ 

ax + a -
( flo + A ) ax div V = az 

Similar expressions are easily deduced for the two other 

directions, OY and OZ. These three expressions are vectorially 

written in a more concise manner as follows: 
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-Since for an incompressible fluid div V = 0, the ex-

pression in V -5·. 4. 2 may be verified. 

V-5. 5 DISSIPATION FUNCTION 

The energy transformed into heat either by change of volume 

or by friction may be obtained by adding the work done by all the ex-

ternal forces. This is equal to the external forces times their displace-

ment (Vdt). 

For instance, in the OX direction, the work of pressure 

forces is: 

p dy dz udt - ( p + ~ ~ dx ) dy dz ( u + ~ ~ dx) dt 

and by all the forces in the ox direction: 

ao-
au o- dy dz udt - ( CT + XX 

dx) dy dz (u + dx) dt 
XX XX ax ax 

+ T dy dz udt - ( T xy + 
a Txy 

dx) dy dz (u + a u dx) dt xy ax ax 

aT 
au dx l + T dy dz udt - ( + xz dx) dy dz (u + dt T llx xz xz a-x 

Finally, introducing the values of o- and T , it is found 

that the total work per UI)it volume changed into heat, and per unit of 

time, is given by the so~called "dissipation function". It is a function 

of the linear and angulaf rates of deformation. 

2 A. (divV)
2 + fL [ 2 (~ ~) 2 

2 U;) 2 (~::)2 = + + 2 

+ (~+ ~y + ( au + 
a y a z a z 

awy -- + a x (~ + ~rJ ax ay 
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>.. (div V) 2 
is equal to zero in an incompressible fluid. 

This function can be used, for example, in the calculation 

of head loss of a viscous flow in a pipe, the damping of gravity waves, 

etc. 
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v -1 Demonstrate that the viscous forces acting on an element of 

fluid of volume unity can be expressed in terms of the rotation by the 

following expression: 

- 2 fJ. (a C _ ~) 
By az 

and two other expressions obtained by permutation. 

Answer: 

- 2 fJ. (~- ~) 
az ax 

- 2 fJ. (~- ~) 
ax ay 

v -2 Demonstrate that in an irrotational flow of an incompressible 

fluid, the sum of the viscous forces is theoretically zero. 

Answer: 

2 
= fJ. 'V grad cp 2 = fJ. grad 'V cp = 0 for continuity 

v -3 Calculate the viscous force acting on a cubic element of water 

-3 3 l 2 
of volume 10 ft and located between y = lO ft and y = IO ft in a two-

dimensional flow defined by the velocity components 
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u = 10- 4 ~ ( 4 - y) y 
v 

v = 0 

w = 0 

Calculate the values of <T and T acting on each side of this cube, and 

( -5 2 ) the rate of dissipation of energy in the cube. v = l. 076 · 10 ft /sec 

V-4 Express 
2~ 

fJ. \1 V in a cylindrical system of coordinates. 

Answer: 

r -direction: 

1 8 8v 
1 

8
2 

v 8
2 

v v 2 8 v 8 
(r Tr J + 

r r r 
fJ. [ r 8 r ~87 

+ 87 - --z - -z ---as l 
r r 

8-direction 

2 2 
8v 

rl. 8 ( 8 v8 ] 1 8 v8 8 v8 ve 2 r] 
fJ. 8r r -- + -z 

8 8
2 + ---::-2"" - -z + -zae .. r 8r 

r 8z r r 

z-direction 

8 8 vz - (r -) + 8 r 8 r 

V-5 Express the stresses <T and T in a cylindrical system of 

coordinates for an incompressible fluid. 
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Answer: 
av l ave v 

2 r + __E. J cr = f.l.ar, "ee = 2 f.l. [r: as rr r 

av 
2 f.l. 

z cr = az zz 

f~ C~J 
av 

T = f.l. + .!_ r] re a r r """88 

[av a vr J T = f.l. a; + rz az 

Tez = [av8 +.!. avz] 
f.l. az r"""88 
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VI-1 

CHAPTER VI 

EQUATIONS OF EULER 

NAVIER-STOKES EQUATIONS 

STABILITY OF LAMINAR FLOW 

MAIN DIFFERENTIAL FORMS OF THE MOMENTUM 

EQUATION 

The momentum equation is obtained by equating the applied 

forces to the inertia force for a unit of volume of the fluid. The physical 

.meaning and the mathematical expressions of these forces have been 

developed in Chapters IV and V. 

According to the assumed approximations on the phenomena 

to be studied, it is convenient to use the momentum equation written in 

different forms. These different forms will be developed in this chapter. 

VI-1. l PERFECT FLUID 

VI-1. l. l Euler' s Equation 

The first major approximation is to assume that the fluid is 

perfect. In this case the friction forces are zero and the applied forces 

consist of gravity and pressure, only. 

The momentum equation is obtained directly from the expres

sions developed in Chapters IV and V, in the three axis system OX, 

OY, OZ, where OZ is assumed to be vertical. 
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Recall: (p~' = p + pg z) 

Inertia forces = pressure and gravity forces 

per unit of volume per unit of volume of fluid 
(See IV -1. l) (See V -3. 4) 

du a p':' 
p d t = ax 

dv a P~' 
p d t = - By 

dw a P~' 
p dt = - a;-

which are vectorially written: 

-dV 
p dt 

Or, along the OX 

+ 

axis, 

grad p':' = 0 

du 
developing the expression of d t 

momentum equation takes the form: (See IV -4. 1.) 

and p~' , the 

Inertia forces Applied forces 

Local 
Inertia 

Convective 
Inertia 

,....-----"--...,_ 
Pressure Gravity 

(
au + 

P at 
au 

uax + au 
vay + w ~~) = 

a - a X (p t pg z) 

Two similar equations may be written in the OY and OZ 

directions. 

Such a system of equations associated with the continuity 

l . h. a u + a v + a w 
re at10ns lp a X a y a Z = 0 (See III-2. 2. 2) forms the basis 

of the largest part of hydrodynamics dealing with a perfect incompressible 

fluid. These equations are mathematically of the first order but are 

non-linear (more specifically quadratic) because of the convective inertia 

terms. This quadratic term is the cause of a number of difficulties 
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encountered in hydraulics. 

VI-1. l. 2 l.Jagrangian Equatjons 

It has been explained in Chapter I that it is possible to study 

problems in hydraulics either in Eulerian coordinates or in Lagrangian 

coordinates. The Lagrangian method consists of following particles 

along their paths instead of dealing with particles at a given point. (See 

I-3.1.) 

The momentum equation in a Lagrangian system of coordi-

nates is used particularly to solve problems related to periodical gravity 

waves. Hence this equation is given here only for the purpose of recog-

nition in reading literature on this subject. Its demonstration is not 

within the scope of this book. 

Friction forces are not taken into account. Hence these 

equations may be obtained from the previous system of Eulerian equa-

tions by the classical operations 

X - X = -stt u dt 
0 

0 

y - yo = stt v dt 
0 

z - z = Stt w dt 
0 

0 

and z being the initial coordinates of the considered particle 
0 

at a given time t and x, y, z the coordinates of the same particle 
0 

at time t . 

If X, Y, Z are the volume or body forces, i.e. gravity, 
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the Lagrangian equation along the OX axis is written: 

1 ap = (x _ a
2
x) h5__ + (Y _ a

2
y) ay + 

p 1fi{ W ax ""iftZ By 
0 0 0 

Two si.milar equations give the value of 

of x 
0 

z 
0 

ap 
By 

0 

and ap 
az 

0 

by permutation 

VI-1. 2 VISCOUS FLUID AND THE NAVIER-STOKES EQUATIONS 

VI-1. 2. 1 If the friction forces are introduced in the Eulerian equations, 

the so-called Navier-Stokes equations are obtained (See V -4. 1). Be-

cause of their importance, the Navier-Stokes equations are fully deve-

loped along the three coordinate axes: 

Inertia Forces Applied Forces 

' Local Convective Pressure Gravity Friction 
Inertia Inertia 

(au au au w~) ap (a2 a
2

u + a2~J 
P at + u- + v- + = - ax + fJ. a) + al a7 ax ay az 

ev 
av av w av) ap (a

2
v a

2
v a2~) 

P at + u- + v- + = + fJ.- + + 
ax ay az - a Y ax2 ay2 az2 

(aw aw aw w aw\ a(p+pgz) e2w a
2
w a2 ) p at+ u-- + v-- + = + 

fJ. ax2 
+ 

ayz 
+ 

aJ ax By ay az 

The Navier-Stokes equations are the basis of most problems in 

fluid mechanics dealing with liquid. They are second order differential 

equations because of the friction terms, and quadratic because of the 

convective inertia terms. 

VI-1. 2. 2 Tensorial Notation 

These Navier-Stokes equations are written in a very concise 
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manner with the aid of tensorial notation. The tensorial writing is very 

frequently used because of its conciseness. A knowledge of tensorial 

calculus is not required to follow the system which is given here as a 

guide to further reading on this subject. 

Use is made of two subscripts, i and j , which indicate 

when an operation is to be systematically repeated and which component 

of a vector quantity (such as V) is being considered. When an index is 

repeated in a term, the considered quantity has to be summed over the 

possible components. For example, the . . . au + av + cont1nu1ty equatlon a X a y 

aw 
az 

= 0 is tensorially written: 

indicates that the quantity (here 

components OX , OY , OZ . 

au· 1 
0 , since the subscript i = ax. 

~1 

V ) has to be summed over the three 

The three previous Navier-Stokes equations may be written 

simply as: 

2 
= - a ( p + p g z) + Jl a ui 

ax. ax. 8x. 
1 J J 

[
au. au. J 

p at
1

+ujax~ 
Here, the subscript i is the so-called "free index" which indicates the 

component being considered, and the subscript j is the so-called 

"dummy index" which indicates repeated operations, 

VI-1. 2. 3 These Navier-Stokes equations are often written in another 

way in order to emphasize the role of the rotational component of motion. 

It is sufficient in this case to use the expression of the inertia force 

demonstrated in Chapter VI, which yields: (See IV -4. 3.) 
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Inertial Forces = Applied Forces 

Local Convective 
Inertia Inertia ' 

Caused by Caused by Pressure Gravity Friction 
variation Rotation 

of Kinetic 
Energy 

[au + 
a y2 

2 ( w '1 v n] a (p + p g z) 2 
p at + = + f!'i7 u ax T ax 

[av + 
a y2 

2 ( u 1' wn] 
a(p+pgz) 

+ 
2 

P at ayT + = f!'i7 v By 

[aw a y2 
2 ( v ~ u '1 ) J a(p+pgz) 2 

P at + --+ = + f!'i7 w az 2 - Bz 

VI-1. 2. 4 Vectorial Notation 

These three equations are easily written vectorially in a 

more concise manner as: 

Inertia Forces 

Local Convective 
Inertia Inertia 

Caused by Caused by 
variation Rotation 

of Kinetic 
Energy 

(- y2 
+ (cu~t v) x v) av ~ 

p at + grad 2 

which may be transformed as 

grad 

In the case of a steady 

= 

= 

= 

(av 
at 

Applied Forces 
;-------~'------·~ 

Pressure Gravity Friction 

av 
-pat 

= 0) 
~ ...... --!k, 2--

p (curl V) x V + fJ. 'i7 V 

ir rotational flow 

(curl V = 0) of a perfect fluid (f! = 0), the above equation gives at 
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once: 

~ v2 
grad ( p 2 + p + pg z) = 0 

or 
y2 

+ p 2 p + pg z = const. 

which is the well-known Bernoulli equation, fully developed in Chapter X. 

VI-1. 2. 5 The Case of Compressible Fluid 

In the case of a compressible fluid, the applied forces must 

take account of the change of volume of the particle. The momentum 

equation along the OX axis for such a fluid is given here without further 

demonstration for the purpose of familiarity in reading. 

8(p+pgz) 
ax + 2 

f.LV' u 
a 

+ ( A + fl.) a X div v 

Inertia Pressure Gravity Friction Change of Volume 

When the above expression is vectorially combined with expressions for 

du d dv b . P d t an p d t , one o ta1ns: 

g~ ~ i 2 

+ p + pg z - (A + fl.) div v) = 
...,. 

av .......... ~ ~ 2~ 
- p lit - p(curl V)xV+f.LV' V. 

VI-1. 3 THE GENERAL FORM OF THE MOMENTUM EQUATION 

It has been snown that the applied forces may be expressed 

independent of their physical nature with the help of the tensor of rank two: 

(J" 
XX 

T xy 
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The main advantage of such a notation is that it is valid for 

any kind of fluid-- perfect or real -- and any kind of motion-- laminar 

or turbulent. It will be shown that if in the .momentum equation the real 

values u, v, w and p are replaced by the average values u, v, w 

and p in a turbulent flow, the surface forces a- and T include addi-

tional fo.rces caused by the turbulent fluctuations. (See VII-5. 3.) 

Hence, the advantage of using the notations a- and r exists 

in expressing general equations which are independent of the nature of 

the flow. Equating the inertia forces to the applied forces expressed in 

the manner shown in Chapter V yields: 

Inertial Forces = Applied Forces 

du 
p dt 

dv 
p dt 

dw 
p dt 

= 

= 

= 

Volume Surface 
Forces Forces 

(0" aT 
X + XX + xy + ax •a Y 

CT a a-
y + xy + Yl + ax ay 

CT aT 
z + xz + yz + ax ay 

a r ) xz 
az 

a, ) yz 
az 

a a- ) zz 
az 

In practice, if OZ is vertical upwards, X = 0 , Y = 0 , Z = .. pg = 

a ( p g z) - a z 

VI-2 SYNTHESIS OF THE MOST USUAL APPROXIMATIONS 

Tables VI-land VI-2 recall the physical meaning of different 

terms and the possible approximations. 

According to different possible combinations of these 

approximations, all the cases presented in the following tables may be 
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TABLE VI-1 

I -
(curl v) x ~ 

..... 
"' "' 

..-<"" ~ i:l 
-~ ·E 
>-"' 

,.q " O;::?l 

.-<l<n 
I lif U U 
v u ro ·r-1 

~:P~t; ro ro ro ...... 
::ESG2 

i:l 
0 
·~ .... 
"' s 
·~ 
~ 
0 ... 
p., 
p., 

«: 

-

p [ av 
at + 

Local 
Inertia 

1st Order 
Linear 
Term 

Steady 
Flow = 0 

~vz -
gradz- + = -grad 

Variation 
of Kinetic Rotational Pressure 

Energy Term Force 
with Space 

Convective Inertia 

1st Order Non-Linear 
Linear 

(Quadratic} Term 
Term 

Irrotational 
Motion = 0 

Solution given 
by a Harmonic 

Function 

Slow Motion 
= 0 = 0 

(p + p g z) + f1 vz v 

Gravity Friction 
Force Force 

Applied Forces 

2nd Order 
Constant Linear 

Term Term 

Gas = 0 Ideal 
(with exceptions) Fluid = 0 



~ 

"' 0' 

Local Inertia 

Steady motion 

or motion con-

sidered as a 

succe s sian of 

steady motions. 

Unsteady 

Motion 

Convective 
Inertia 

Slow 
Motion 

Ir rotational 
Motion 

Rotational 
Motion 

Slow 
Motion 

Irrotational 
Motion 

Rotational 
Motion 

------------------------

-

TABLE VI-2 

Friction Equations Some Applications 

Without Friction g;;;.'d (p + p g z) ~ 0 Hydrostatics 

~ 2~ Steady uniform flow 
With Friction -grad (p + pg z) + fJ.'V V ~ 0 Flow in a po!·ous 1uedlum 

Non-uniform (convergent) 

v2 Steady flow at a constant 
Without Friction g-;a'd (P-z- + p + pgz] ~ 0 total energy. Calculation 

of pressure in a two-
dimensional flow net. 

- ( vt J General case of steady 

With ~riction 
grad Pz + p + pg z ~ motion. Boundary layer 

--!io _...... __,_ 2 .-. (after so_me simplifications) - p(curl V)+V+ fJ.Il V 

av -
Gravity wave ·\lst 

Without Friction p liT + grad (p + p g z) ~ 0 Order theory) Water 
hammer theory. 

~ 

av - 2~ Wave filter theory 
With Friction p &t + grad (p + p g z) - fJ.Il V ~ 0 

(mean motion) 

Without Friction 
av ~ v2 

Shock wave theories p liT +grad(p--z +p+pgz) ~ 0 

"2 
grad (p T + p + pg z) ~ 

Gravity wave theory of 
Without Friction av P (cu'rl. V) +v ~ 0 

Gerstner 
-Pat-

With Friction General Case Tidal wave in an estuary. 



encountered in hydraulics. It is very often sufficient to neglect the 

~ 

gravity force (grad p g z} and to consider p as a variable function of 

p to obtain the basic equations governing the motion of gases, as long 
~ 

as the divergence of V remains small. 

It may be noticed that, in practice, the friction term f1'i7
2 V 

is often empirically simplified in order to be able to study more complex 
~ 

phenomena such as flow through a porous medium (K V}, or turbulent 

2 
flow (KV ). These two points are analyzed in Chapters VIII and IX. 

VI-2. 1 

VI-2.1.1 

AN EXAMPLE OF AN EXACT SOLUTION OF NAVIER

STOKES EQUATIONS 

Difficulties of Integration 

It is to be expected that a general solution of the system of 

<:lifferential equations given by the continuity and momentum principles 

does not exist. However, so.me exact solutions can be obtained if the 

boundary conditions are simple, even if the quadratic term of the con-. ' ' '~ . ··-' . . -

vective inertia is not zero (i.e., in the case of a non-uniform flow}. 

Some examples of this include flow between parallel plates (i.e. the 

Couette flow, the Poiseuille flow}, flow due to a rotating disk, etc. 

VI-2. l. 2 Flow on a Sloped Plane 

The very simple example of a two-dimensional steady uni-

form flow on an inclined plane of infinite dimensions is given here as 

an example (Figure VI-1}. The Navier-Stokes equation given in VI-l. 2. 1 

may be simplified as follows: 
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FIGURE VI-1 

LAMINAR FLOW ON AN INCLINED PLANE 

S . th t· · t d 8 u 1nce e mo lOll lS Sea y, tit 
8v 

= 0 and at = 0 • Since the motion 

is two-dimensional, w = 0 au = 0' 
' 8z 

motion is uniform and parallel to the axis OX : 

0 , etc. Since the 

v = 0 ' 
8v 
ax 

av 
Ely ;:::: 0 ' = 2 

f.J.V v = 0 ' 0 , etc. 

au 
- = 0' ax = 0 ' 

ap 
8 x = 0 , etc. 

The components of the gravitational force are X = pg sin a 

and Y = - pg cos a . 
au 

The continuity equation is reduced to 
8 

x = 0 

since v = 0 , resulting from the fact that the flow is uniform. 

The Navier-Stokes equations are reduced to: 

pg sin a + f.J.(:)) = 0 

ap 
0 = - 8 y - pg cos 01. 
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The second equation points out that the pressure obeys a 

hydrostatic law: p + pgy cos a = constant. This constant may be, for 

example, the atmospheric pressure p such that: 
a 

p = pa- pgy cos a 

Hence the pressure is a constant along a parallel to the OX 

axis and equal to atmospheric pressure at the free surface. 

plane, and 

The boundary conditions are u = 0 for y = -d on the 

d u - 0 for y = 0 at the free surface. dy -

The integration of 

e2 
u = a/ 

- pg sin a 
fl 

and taking into account the above boundary conditions, gives successively 

and 

8 u = _ g sin a y 
!ly v 

(v = ~) 
p 

u = g sin a (d2 _ /) 
2v 

which is the equation of a parabola. 

The discharge per unit of width 

g sin a d3 
q = 3v 

g sin a 
2v 

In the case of a vertical plane, "' = 

Sd 2 2 
( d - y ) dy 

0 

and q = 

The loss of energy per unit length may be given with the aid 

of the dissipation function <:> , which in this case is simply equal to 
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Hence the loss of energy is 

Sd Sd(au)2 
o<Pdy = f.L o 8y dy = 

This can also be obtained by considering directly the work done by friction 

forces Ff 

S d S d au S d(8 u )2 
0

Ffdu = f.L 
0

8ydu = f.L 
0 

ay dy 

VI-2. 1. 3 Numerical Treatments of the Navier-Stokes Equations 

It is now possible, thanks to the development of high speed 

computers, to treat the Navier-Stokes equations directly by finite dif-

ferences. This permits the study of complex flow motions beyond the 

usual limits of analytical solutions. 

Among many possible methods which have been developed, 

one must mention the MAC (markers and cells) method for two-dimensional 

or axially symmetric incompressible fluid, and the PIC (particle in cell) 

method for two-dimensional compressible fluid. 

In brief, these methods consist in solving time dependent flow 

motion at successive intervals of time from a given set of boundary con-

ditions and the knowledge of the flow motion at time T = 0. The space 

intervals define a square mesh or a grid. Considering one (or two) par-

ticle(s) at the center of each of these squares at time T = 0, it is then 

possible to calculate the paths of these particles at successive intervals 

of time. The results are printed directly by the computer, and give a 

Lagrangian representation of the flow pattern as a function of time. It 

is also possible to obtain and print velocity vectors and pressure distri-

butions (isobars) directly. 
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' 
I 

It is easily realized that this method is extremely powerful, 

as is evident from Figure VI-2. This figure represents the flow patterns 

which will be obtained by the sudden release of a vertical wall of water 

(this is the dam break problem) and hitting an obstacle. However, this 

method, as any numerical method, also has its limitation. The accuracy 

of the results is rapidly limited by the error which is made by replacing 

differential terms by finite difference. These are the truncation errors; 

a round-off error is also added, as will be explained in further detain in 

Section XV -4. 3. 

Any calculation also requires a preliminary analysis of stability 

conditions in order that the cumulative error does not blow out of propor

tion. This method is costly due to computing time. Nevertheless, it is 

to be expected that these kinds of methods will be used more and more for 

solving problems of increasing complexity. 

VI-3 

VI-3. 1 

THE STABILITY OF LAMINAR FLOW 

THE NATURAL TENDENCY FOR FLUID FLOW TO BE 

UNSTABLE 

Consider two layers of fluid moving with different velocities 

because of the effect of friction (Figure VI-3). If for any reason a small 

undulation exists between these two layers, the velocity of layer (2) de

creases; hence, according to the Bernoulli equation, the pressure tends 

to increase. 
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FIGURE VI~2 

AN EXAMPLE OF AN APPLICATION OF NUMERICAL 

TREATMENT OF THE NAVIER"STOKES EQUATION 

(Courtesy of Dr. F. Harlow of A. E. C.) 
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On the other hand, the velocity of layer ( l) tends to increase; 

hence, the pressure tends to decrease. The pressure action being in 

the same direction as the inertial forces (by centrifugal action), the 

(I) 

(2) 

INERTIA (CENTRIFUGAL) ACTION 

PRESSURE ACTION 

FIGURE VI-3 

FLUID FLOW IS FUNDAMENTALLY UNSTABLE 

undulation has a natural tendency to increase in amplitude. However, 

this increase in path length of the particles in motion causes an increase 

in friction effect, which in turn has a tendency to dampen such an undu-

lation. 
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Hence, the stability of a laminar flow, without undulation or 

with stabl,e undulations, depends upon the ratio of the gradient of the 

kinetic energy (dimensionally equal to the convective inertia forces} to 

the vi·scous forces. This ratio is dimensionally a function of the so-

called Reynolds number (R = V L/v) which has to be defined empirically. 

V is a velocity, L is a characteristic length. 

If instability conditions are satisfied, this primary, small 

undulation increases as shown by Figure VI- 4. 

VI-3.2 FREE TURBULENCE, EFFECTS OF WALL ROUGHNESS 

Primary undulations are caused either by the mass of the 

fluid or by a boundary. In the first case the phenomenon is called "free 

turbulence". The balls of turbulence come initially from the zone where 

the gradient of kinetic energy is a maximum, as for exa.mple from the 

boundary of a circular jet in the same medium (Figure VI-5}. 

Primary undulations are most often caused by roughness of 

a fixed boundary. Indeed, any roughness causes a local increase of 

velocity which consequently produces a local strong gradient of kinetic 

energy, causing an instability (Figure VI-6}. 

This instability may exist even between two fluids of different 

density. For example, the wind blowing on a liquid causes ripples. 

These ripples are due to an instability between the air flow and water 
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flow caused by the friction of the wind on the free surface of the water. 

On the other hand, at sea the breaking phenomenon, either on a beach 

or white caps, is also a cause of turbulence in the same way that a 

hydraulic jump is a cause of turbulence in a steady flow. Both are 

particular cases of free turbulence. 

VI-3. 3 SOME THEORETICAL ASPECTS 

Mathematically, the problem of the stability of a viscous 

flow is, in reality, the problem of the origin of turbulence. 

Because of the definite instability of the flow, a disturbance 

caused by external forces (such as that created by a roughness at the 

boundary) grows exponentially if the disturbance is large enough. If the 

disturbance is small, the friction forces cause its damping. But if the 

ratio of the gradient of kinetic energy (dimensionally equal to a convec-

tive inertia force) to the viscous force is large enough, even an infinitely 

small disturbance is able to cause instability. 

Hence, laminar flow is naturally and basically unstable at 

large Reynolds numbers. But even at low Reynolds numbers, laminar 

flow is unstable if the disturbance is large enough. 

It is possible, with many precautions, to obtain a laminar 

flow in a very smooth pipe up to a Reynolds number of 40, 000, although 

under normal conditions tbe critical value of Reynolds number for a pipe 

is 2,000. 

A disturbance superimposed on the primary motion causes, 

as previously seen, a large local increase in the convective inertia forces. 
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This disturbance would tend to be dampened out by friction unless there 

I 

I 
is a transfer of energy (or a transfer of momentum by convective inertia 

"' ' ' forces} from the primary motion to this disturbance. Hence, in a tur-

I 
bulent motion, the rate of turbulence depends on the rate of energy which 

!. 
~ 

is transmitted from the primary flow to be finally absorbed entirely by 

friction. 

The very interesting question concerning the origin of tur-

bulence will not be studied in detail here. It is simply emphasized that 

the Navier-Stokes equations give unstable solutions which represent 

exact motions only at low Reynolds numbers, i.e. when the friction 

forces are large in com.parison with the kinetic energy gradient. 

These considerations lead to a further study of turbulence 

in Chapters VII and VIII. 

-· ... 
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VI-1 Consider successively a circular pipe and a square pipe 

rotating around their own axes at an angular velocity varying suddenly 

from w = 0 at time t = 0 to w =w
1 

at time t = < (w
1 

small) and 

w = w
2 

at time t = t
1 

(w
2 

large). These two pipes are successively 

half filled and fully filled with liquid. Describe qualitatively the liquid 

motion in the two cases where l) the fluid is perfect, and 2) the fluid 

is viscous. 

VI-2 Demonstrate that the velocity distribution for a flow between 

two parallel planes, one of them being fixed and the other one moving 

at a constant velocity U, is 

u = u y 
e 

where e is the distance between the two planes. 

VI-3 Write a Navier-Stokes equation for an unsteady flow between 

two parallel planes in which one of the planes is fixed while the other one 

is moving at a speed u(t). 

Then write the Navier-Stokes equation for a two-dimensional 

steady flow between two planes almost parallel; one plane is fixed, and 

the other plane is moving at constant velocity U. Do the simplifying 
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approximations that you think are permissible for analyzing the flow motion. 

VI-4 Calculate the two-dimensional velocity distribution u ( y} be-

tween two parallel horizontal planes between which there are two layers 

of fluid of thickness e
1 

and e
2

, viscosity f.Ll and f.L 2 , and density p
1 

and p 2 (p
1 

> p 2) respectively. One plane is fixed and the upper plane 

moves at constant velocity U. 

Answer: 

u ( y} when y < e
1 

and 

u( y} where y > e
1 

VI-5 Consider a two-dimensional flow between two parallel hori-

zontal planes separated by a distance 2 h. 

1) Write the continuity relationship, the Navier-Stokes equation, 

and the boundary condition. The flow motion will be 

assumed to be in the OX direction and OZ is perpen-

dicular to the plane. 

2} j being the head loss defined by 
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Answer: 

~~ = -pgj 

calculate the velocity distribution u = f(j, z) by two 

successive integrations, and the total discharge p e r 

unit of width Q = f(j, h). 

3) Calculate the mean velocity u = f(j, h) and express u 

as a function of u, z, and e . 

2 
4) Calcul ate : zz and ~~ = f(u, h). 

5) Calculate the rotational coefficients ~. TJ, C as functions 

of j, z, h . 

6) Calculate the loss of energy per unit length of the direction 

of the flow: p g j Q = f(j, h) and the value of j as a function 

of Q and h. 

7) Should an obstacle be inserted between the two pla nes, 

l) 

demonstrate that the mean motion with respect to the 

. l oz . . . l . au a v o verhca lS 1rrotat1ona, 1.e., ay- ax = • (It 

is the Hele-Shaw analogy. ) Express the potential func tion 

as a function of p, h and fJ.. 

au 
ox = 0 ' 

1 a p 
pax 

v = w = 0, u = 0 
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2) u = p g j (h2- z2) 0 = 2 p g j h3 
2fl 3fl 

. h2 3~ (h2 _ z2) 
3) u = p g J u = 

3fl 2 h 

4) 
d

2
u 3u dp 3 flu 

d""7 = -2 dx = 7 h 

5) I; 0 ( 0 
I (~ ~) 

pgjz 
= = "1 = "Z = 2fl 

6) p gjQ = 
2(pg)2j2h3 

j = 3 fl 

3fl 3 
2 p g h 

7) w = 0 

1 8 p = 
p 8u 

1 8 p = 
p 8 y 

8p 
8x 

2 
v V' u 

(v = v average 

Since 

8p 
8y 

a2 p au 8v 
Ely 8x' one must have Ely- ax = 0 
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VI-6 Calculate the ratio of inertial force to viscous forces in the 

case of a laminar steady uniform flow. Discuss the statement which 

consists of saying that the Reynolds number is a significant dimension-

less parameter giving the relative importance of the inertial force to 

viscous force. Is the ratio of the gradient of kinetic energy to the viscous 

force a more significant definition? 

VI-7 The following dimensionless quantities are defined: 

X 

L' 

t 
T' 

p* = ~ ' 
pU 

= :t.. 
L' 

F~~ = 'F 
g 

= V ( u, v, w) 
u 

where L, T, U are an arbitrary typical length, time and velocity, and 

F is the gravity force. Then demonstrate that the Navier-Stokes equa-

tions can be written in dimensionless form as: 

[ 
L ) au~' t a ( , t l ... 2) t 

U T at'~ ax':' P'" Z u•· 

= 

and two other similar equations. Explain the physical significance of 

the parameters: 
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VI-8 

u = f( y, z} 

VI-9 

Vl-10 

written: 

UT 
--y;-

UL --v 

(sometimes called reduced frequency} 

(Froude number) 

(Reynolds number) 

Demonstrate that in a flow defined by v = w = 0 and 

= 0, one has 

8Tj 2 
p 8t = j.J.\7 T] 

p 
81; 

= \72 c 8t jJ. 

D 8!;+8Tj 81;= 
emonstrate that 8 x 8 y + 8 z 0 

Demonstrate that the Navier-Stokes equation can still be 

d!; 2 [ 8 u 8 u 8 u] p--j.J.Y'!;=p !;-+Tj-+1;-
dt 8x 8y 8z 

and two other equations obtained by circular permutation. 
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Answer: 

d'l'] 2 [!; av + av + C~l p fJ. 'V '1 = p dt - ax , a Y az 
( --

d!; 
fJ. 'Vz i; = p [!; aw + aw + I: a w] 

I p dt - , a Y ax az 
I 

.·' 

" 
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VII-1 

Vll-1. 1 

.•. ·---------···· 

CHAPTER VII 

TURBULENCE - MEAN MOTION - MEAN FORCES -

REYNOLDS EQUATION 

THE DEFINITION OF MEAN MOTION AND MEAN FORCES 

CHARACTERISTICS OF MEAN MOTION VERSUS 

ACTUAL MOTION 

In the previous chapters, theory was sometimes illustrated 

by examples in which the motion was obviously turbulent, despite the 

fact that in the theory only an ideal fluid or a viscous laminar flow was 

dealt with. In a turbulent motion, velocity and pressure vary in a 

disorderly manner. In fact, in these examples, it was implied but 

not specified that only the average values of the velocity and the 

pressure were dealt with. 

For example, a turbulent motion is always: unsteady -

since at a given point the velocity changes continuously in a very 

irregular way; non-uniform - since the velocity changes from point 

to point at a given time; rotational - since the friction forces, pro-

oZ _.v portional to v , are important. These characteristics are true 

as far' as the actual motion is concerned. However, a turbulent 

motion may often be considered in practice as steady, uniform (in a 

pipe), or irrotational (over a weir). This is because only the average 
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motion is steady, uniform or irrotational, and the previously con-

side red examples were relative to the average values. 

Now this method has to be justified and the differences 

between the motion of an ideal fluid or a viscous flow, and a mean 

turbulent motion have to be further considered. This is the purpose 

of this chapter. 

VII-1. 2 VALIDITY OF THE NAVIER-STOKES EQUATION FOR 

TURBULENT MOTION 

It is true that equalities between the inertia forces and the 

applied forces on an elementary fluid particle are valid even if the 

motion is turbulent. Hence, the basic Navier-Stokes equations and 

continuity relationships are also theoretically valid in the study of 

turbulent motion. 

However, it is impossible to obtain an exact solution for 

such a complicated motion. It has been seen that it is sometimes 

possible to calculate a laminar solution where the boundary conditions 

are simple. Also, it is possible to know from theory whether a small 

disturbance will increase or be damped out by friction. However, 

theory is actually limited to these cases. 

On the other hand, it is not necessary to know the exact 

fine structure of the flow in engineering practice. Only the average 

values and the over-all and statistical effects of turbulent fluctuations 

have to be studied. This is possible because of the random nature of 

these turbulent fluctuations. 
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Hence, the apparently complicated and disorderly motion 

has to be analyzed for the mean motion only. Although for some 

particular problems a study of the fluctuations is directly involved, it 

is usually sufficient to take only the statistical values into account. 

VII-l. 3 DEFINITIONS OF THE MEAN VALUES IN A TURBULENT 

FLOW 

In a turbulent motion, as in the case of a viscous flow, 

velocity and pressure have to be known as functions of the space 

coordinates and time. -The instantaneous velocity V at a fixed point is the 
::;;;; 

vectorial sum of the mean velocity V with respect to time (referring 
_,. 

to the basic primary movement} and the fluctuation velocity V' which 

varies rapidly with time both in intensity and direction. This can be 

~ ~ ~ 

expressed by the relationships V = V + V' where, by definition, 

::,.; 
v = l 

T S
T.,.. 

v dt 
0 

= and V' = l 
T S

T_... 
V' dt 

0 

= 0 where T is a 

time interval to be specified in the next section. Similarly, the instan-

taneous components of velocity are defined as follows: 

real mean fluctuation 
velocity velocity velocity 

u = u + u' 

v = v + v' 

w = w + w' 
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and u = l 
T = 

l 
T S

T 
u' dt 

0 
= 0 . Similar 

definitions exist for the v and w components. Also by definition, 

u' = v' = w' = 0 . Similarly, instantaneous pressure p is the 

scalar sum of the mean pressure p and a fluctuation term p' such 

that p = p t p' where 

p = l 
T 

T s p dt 
0 

p' = l ST 
T 

0 

p' dt = 0 

Hence, turbulent motion may be considered as the superposition of a 

mean motion and a fluctuating and disorderly motion, random in nature, 

which obeys statistical laws. 

VII-l. 4 STEADY AND UNSTEADY MEAN TURBULENT FLOWS 

It should be noted that the mean value is defined for intervals 

of time T which is large compared to the time-scale of turbulent flue-

tuations but small compared to the time scale of the mean motion. 

If, for example, one considers the oscillation of water in a 

tunnel (surge tank) where motion is turbulent, the instantaneous velocity 

at a fixed point varies quickly because of the turbulence. The average 

velocity defined for a relatively short interval of time varies also with 

respect to time, but its change is slow. It has the period of the oscil-

lation. The real motion is always unsteady because of turbulence and 

in this case, the mean motion is also unsteady. (Fig. VII-1) 

In the following discussion, a motion is called unsteady only 
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if the mean value of the velocity defined in relatively short intervals of 

time T varies during a longer interval of time. This short interval 

of time, which permits definition of the mean motion, is relative to the 

frequency of turbulent fluctuations. It is difficult to give an order of 

magnitude of T . It varies with the phenomenon to be studied. For 

example, it is long for the meteorologist who deals with atmospheric 

motion, and it is short for the aerodynamist who deals with the turbu-

lence effects in the boundary layer along a wing. 

VII-1. 5 MEAN MOTION IN A PIPE 

As an example of mean motion and fluctuating motion, a 

turbulent 11 uniform 11 flow in a pipe is defined as follows: (Fig. VII-2) 

u, v, w ~ 0 u', v', w' f. 0 

v, w = 0 u f. 0 u', V\ w' = 0 

On the other hand, aU: 0 since the motion is uniform along the 
ax = 

OX axis. However, au 
ay, 

. in the pipe is non-uniform. 

au 
az f. 0 since the velocity distribution 

All the derivatives of v and w are zero since v and w 

are constant and equal to zero. 

All the derivatives of u', v', and w' are different from 

zero. 

au' au' 
ax ' a y 

av' 
ax 

of 0 

but the mean values of those quantities are always zero. For example, 
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Vaverage = est Vaverage = f (I) 
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FIGURE VII-1 

THE STEADINESS OF A TURBULENT FLOW IS DEFINED BY THE 

MEAN VELOCITY ONLY 
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since u:· 
l }T u' dt 0 by definition, = T 

= 
0 

au• l }T au' a l :;T u' dt au' 
ax 

= 
T ax 

dt = ax T = ax = 0 
0 0 

VII-1. 6 MEAN FORCES 

Since the real value of the inertia forces is always equal to 

the sum of the real values of the applied forces in any kind of motion 

(laminar or turbulent), the mean value of the inertia forces with respect 

to time is equal to the mean value of the applied forces with respect to 

time. This may be expressed as follows: 

Since: 

Local 
Inertia + 
Forces 

Convective 
Inertia + 
Force 

it is always true that: 

Pressure 
Force + Gravity 

Force + Friction 
Force = 0 

Mean value [Local 
with respect Inertia 
to time of Force 

Convective G . p F · t' ] 
+ I t . + rav1ty .o. ressure nc 10n _ 

0 ner 1a F , F + F -
F 

orce orce orce 
orce 

This is expressed mathematically, along the OX axis, as: (see Chapter 

VI-1. 2. l) 

...!.IT (~+ 
T J P at 

0 

au au au l lT 
u- + v- + w -) dt = - (-8x 8y 8z T 

0 

or, using the <r and T notations and the rotational coefficients 'l , s 
and s : (see Chapters VI-1. 2. 3 and VI-1. 3) 
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l 
+ T 

+ 2 ( w '1 - vt; ) ) dt 

a 
ax 

= 

dt 

and similar equations along the OY and OZ axes. Finally, using the 

vectorial notations: 

l 
T 

rT ( aV 
J P at 

0 

l 
T 

-+ grad + ( c~l V) x V ) dt = 

--grad (p + p gz) + 

Now each of these mean forces has to be expressed as a 

function of the mean values and fluctuating values of the velocity and the 

pressure. For this purpose, the different forces are distinguished as 

follows: 

l. The constant forces: 

2. The linear forces: 

3. The quadratic force: 

- Gravity force 

Pressure force, linear function 
of p 

- Local inertia force, linear -function of V 

- Friction force, linear function 
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Convective inertia, function of 
the square of velocity y2 or a 
product of two components of 
velocity: u2, vZ, v12 , uv, uw, vw. 
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VII-2 CALCULATION OF THE MEAN FORCES 

The mean forces are calculated as a function of the mean 

values of velocities and pressure. These calculations are fully developed 

for a better understanding. They are based on the fact that the order of 

mathematical operations has no effect on the final result. In particular, 

integration during an interval of time T and derivatives with respect 

to time or space could be interchanged. 

VII-2. 1 THE CONSTANT FORCE 

The gravity force depends only on the density of the elemen-

tary particle. The fluctuations of pressure are too small to change this 

density {even in the case of a gas, where this force is still completely 

neglected). Hence, the gravity force does not depend on any kind of 

motion and is the same for laminar and turbulent motion. 

The mean value of the gravity force is equal to this constant 

gravity force. 

Mathematically this may be expressed successively as: 

pg= 1 ST 
T 

0 

p g dt = 1 
pg T dt = pg 

since p g is a constant with respect to time; also, 

= 1 ST ~ 
T 8z 

8 
8z (pgz) 

0 

{pgz) dt = 
8 1 

BzT 

since pgz is constant with respect to time. 
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Similarly: 

The gravity forces are mathematically expressed in the 

same way for turbulent motion as for laminar motion. 

VII-2. 2 LINEAR FORCES 

VII-2. 2. l Mean Local Inertia Force 

The mean value of the local inertia force, 

~ 

p av 
at or 

au 
P at 

av 
p a t 

aw 
p a t 

may be obtained by considering any of its components; for example: 

p ~~ . The mean value of the term p ~~ during an interval of time 

('T 
T is given by alternating the operation :t with the operation i j 

0 

as follows: 

au dt 
a t = 8 

P"j)t 
l ('T 
T j_ 

0 

u dt 

(It is understood that the symbol in 8
8
t should be 

8
8
T, see Section VII-l. 4. 

This notation will be avoided for the sake of simplicity.) Introducing the 

average and fluctuating values u = u + u' 

T 
-au 8 l (' (- 1) 
Pat= P1ftT J u+u dt = 

0 

and the definitions of u and u': 

----, 
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1 ST u dt u' 1 
STu' dt 0 

T = u = T = 
0 0 

results ln 

au = ali 
(or a 11) p at p at p 1fT 

Hence, the mean value of the local inertia force with respect 

to time is equal to the inertia force caused by the change of value of the 

mean velocity alone. The local inertia force in laminar flow and in 

turbulent flow is mathematically expressed by the same type of function: 

au 
p 8t 

::li' a"V 
av or p at p at 

aw 
p 8t 

However, in the cases of laminar motion, V (U, v, W) is 

rigorously equal to the actual value V ( u, v, w ) of the velocity. 

VII-2. 2. 2 The Mean Pressure Force 

Similarly averaging the pressure forces: 

-- grad p or 

185 

ap 
- ax 

ap 
- ay 

ap 
- az 



one obtains for the component - ~~ along the OX axis: 

ap l ST ap dt a l STP dt - ax = - T = - ax T = ax 
0 0 

a l ST p dt a - ax T - ax 
0 

has 

Since, l ST p dt 
T = 

0 

- ap 
= - ap similarly: 

ax ax ' 

.__,. 
grad p -grad p dt 

~ - -- grad p = - grad p 

and 
l 

p T 

.__,. l = - grad T 

a l s~p+ p') dt - ax T 
0 

l ST p' dt T 
0 

ST p' dt 
0 

ST pdt = 
0 

= 0 ' one 

--- grad p 

The mean pressure force is equal to the force due to the 

mean pressure alone, and is mathematically expressed in the same way 

as the actual motion. 

VII-2. 2. 3 Mean Viscous Force 

The viscous force 

2 
(a

2
u a 2u ~) fl\7 u = fJ. 

ax
2 + --2 + 2 ·. 

ay az 

flv2v 2 ( a
2

v a
2

v ~) or fJ.\7 v = fJ. + --2 + 
ax

2 
ay az

2 

2 (a 2'; + 
2 

+ a 2';) a w 
fJ.\7 w = fJ. --2 

ax ay a z 
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has a mean value which may be calculated by considering, for example, 

a2u 
one of the second order terms such as f.L --2- . Averaging this term 

leads successively to: 

l 
T 

And more generally: 

ax 

S
T ...... 

Vdt = 
0 

The mean viscous force is equal to the viscous force due to 

the mean velocity alone, and is mathematically expressed in the same 

way as the actual motion. 

VII-2. 2. 4 Conclusion on the Linear Forces 

All the linear forces involved in the mean motion are mathe-

matically written in the same way for both mean turbulent flow and actual 

motion, turbulent or laminar. In viscous motion, the mean values V 

and p are rigorously equal to the actual instantaneous values V and p . 

VII-2. 3 THE QUADRATIC FORCES 

The convective inertia forces are: 

p ( gr:d 
y2 

+ (cli'i=l V) X v) (u~ + au + au) 2 p v-- w--
ax 8y az 

or (u~ + av + av) or p v-- W--ax ay az 
au. 

1 
p u. ax. ( u aw + aw 8w) J + J p ax v"'FJY Waz 
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All these terms are proportional to V
2 

or to a product of the components 

of V: 
2 2 2 

u , v , w , uv, uw, vw . A simple general demonstration 

would be the use of the tensorial notation pu. 
J 

au. 
1 

ax. 
J 

However, to be 

more comprehensive, it is useful to reason on one of these ordinary 

terms such as au 
Puax and to generalize the obtained result. 

Consider for example, the component u = u + u' . Squaring 

u yields u
2 

= U:2 + 2 u u' + u'
2 

, and averaging u
2 

leads successively 

to: 

2 
u = l 

T 

Introducing the relationships: 

l ST U:2 
dt 

-2 (since u is a constant in 
T = u 

0 

l ST 2 u u' dt 211 
l 

= T T 
0 

~ s: 2 
u' dt = u' 

2 

ST u' dt 
0 

the interval of time T 

0 (since 
l ST u'dt o) = T = 

0 

(u' mal be positive or negative 
but u' is always positive and 
its mean value is different from 
zero. ) 

Similarly, consider a product: 

uv = (u + u' ) (v + v' ) = uv + u'v + v'u + u'v' 

It has for a mean value: 

u v = u v + u'v' 
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since the mean values of uv' and u'v are zero. 

Now, considering the mean value of any term of convective 

inertia, 

au 
pu

ax 

such as 
au 

puax. one has successively: 

au 
p u ax dt = i ST p(u+ u') :x (u + u') dt 

0 

ali+ u au' + u' au+ u' au' 
ax a X ax a X 

and considering each of these terms independently gives: 

= 

l STu 
T 

au dt = u au 
ax ax 

- au (since u and ax are constant 

0 with respect to time) 

l ST au' dt 
l a ST u' dt 0 (since ST u'dt o) 

T 
u = u T ax = = 

ax 
0 0 0 

1- y.; u' 
au: 

dt 
l au: ST u' dt 0 

T ax = T ax = 
0 0 

l ST a ' l a ST ,2 a ,2 au' 
u' ....2:... dt 

u dt u f 0 
T = T ax --z = -z = u'--

ax ax ax 
0 0 

Introducing these values yields: 

au 
p( u 

au: 
+ u' ~) pu = ax ax ax 

and similarly, it is found that: 

av 
P(u: 

av: 
+ u' ~) and so on. pu ax = ax ax 
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Hence, the mean value of a convective inertia force with 

respect to time is equal to the sum of the convective inertia caused by 

the mean velocity and the mean convective inertia caused by the turbulent 

fluctuations. As far as the mean value of the velocity alone is concerned, 

the convective inertia terms have the same mathematical form as for 

the case of a laminar motion. 

VII-3 THE CONTINUITY RELATIONSHIP 

In the simple case of an incompressible fluid, the continuity 

relationship is written: {see Chapter III-2. 2. 2) 

au 
ax 

aw 
ax = 0 

This relationship, expressed as a function of the mean components of 

velocity and turbulent fluctuations, becomes: 

or: 

a -l a (- l + _a_ - l ax (u'+u + ay v+v' az (w+w' = 0 

au + 
ax 

av aw au ' av' + + + + 
ay a z ax a y 

aw' 
az 

= 0 

The averaging process, applied to au 
, for example, gives: 

ax 

au l ST au dt a l ST u dt au 
= = = 

ax T ax ax T ax 
0 0 

and applied to au' gives: 
ax 

au' l ST au• 
dt a l STu' dt ax = T ax 

= 
ax = T 

0 0 
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and the continuity relationship for the mean motion becomes: 

aU: + aV" + aw 
0 

ax ay = a z 

( Consequently: au' + av' + aw' = 0 ) 
ax ay az 

The mathematical form of the continuity relationship is the 

same for the mean motion as for the actual motion. 

VII-4 THE MAIN CHARACTERISTICS OF THE MEAN MOTION 

OF A TURBULENT FLOW 

Insofar as the mean velocity and the mean pressure alone 

are concerned, the basic momentum equation and the continuity relation-

ship have exactly the same mathematical form as the corresponding 

equations for the actual motion. However, other forces exist and have 

to be added. These new forces are caused by the convective inertia of 

the turbulent fluctuations. If these last "new" forces may be neglected, 

or as long as only the forces which are functions of the mean velocity 

and mean pressure are dealt with, the solutions of problems concerning 

turbulent motion have the same mathematical form as the solutions 

given by the Navier-Stokes equations. For example, a mean motion 

which is steady and irrotational and for which the viscous forces f.L'i7
2 V 

are neglected obeys the well known Bernoulli equation: 

vz 
p 2 + p + p gz = constant 
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However, the velocity V and the pressure p are the average values. 

The assumptions used in applying this equation must be relative to the 

mean motion; i.e., the mean motion must be steady, irrotational and 

without viscous friction (despite the fact that the actual motion is always 

in fact unsteady, rotational and with friction) . 

Hence, it is now justified that examples of turbulent motion 

were cited in the previous chapters to illustrate our considerations on 

irrotational motion despite turbulence. 

In practice the fluctuations of pressure p' are very small 

J>- -by comparison with the real pressure p , such that p - p . On the 

other hand, the viscous forces fJ. v2 
V caused by the mean motion are 

generally small in comparison with the other forces, in particular with 

the convective inertia forces caused by the turbulent fluctuations. The 

viscous forces can often be neglected except, for example, in a laminar 

boundary layer. 

Now the effects of the convective fluctuating forces on the 

mean motion have to be studied. Then a relationship between the value 

of the mean velocity and the fluctuating velocity has to be established. 

Since another unknown V' ( u', v', w' ) has been added, another rela-

tionship is necessary in order to solve problems in hydraulics. These 

studies will be the purpose of the next chapter. 

VII-5 REYNOLDS EQUATIONS 

Now applied forces and inertia forces for a turbulent flow 

are equated in the form of the so-called Reynolds equations. 

192 

I 

.. I 
I 



-----1---------

VII-5. 1 PURPOSE OF THE REYNOLDS EQUATIONS 

Expressing each force in the Navier-Stokes equation as a 

~- - -
function of the mean values V ( u, v, w) and the fluctuating values 

~ 

V ( u', v', w' ) and averaging, leads to the Reynolds equation. The 

Reynolds equation is the form of the Newton or momentum equation for 

turbulent motion. 

Since each of the mean forces has been calculated in the 

previous sections, it is possible to obtain directly the Reynolds equations 

by equating the sum of the obtained expressions to zero. It is recalled 

that each force has the same mathematical form as in the Navier-Stokes 

equation expressed as a function of the mean values of velocity or 

pressure. However, additional convective inertia forces exist, caused 

by the fluctuating terms. For example, the mean value of the quadratic 

inertia term 
au 

Pu- is ax 
au 

pu-
8x = au: 

pu-
8x + 8u1 

pu' --8x 
Hence, 

the momentum equation valid for the average motion may be written 

directly: 

( 
au 

P at 

local 
inertia 

+ au:+ u ax 
ali 

v- + ay 
au: 

w-
8z + 8u' 8u' 8u' 

u' -- + v' -- + w' -
8 

z 8x 8y 

convective inertia 
caused by the mean 

velocities 

a 
8 X (p t p gz) t 

pressure 
gravity 

2-
f.LV' u 

viscous 
force 
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(Since the calculation method is identical in the OY and OZ directions, 

only the momentum equation along the OX axis is studied. ) 

VII-5. 2 REYNOLDS STRESSES 

As far as the mean motion is concerned, the convective 

inertia forces caused by the fluctuating velocity components may be con-

sidered as external forces, similar to the pressure or viscous forces. 

Hence, it is necessary to transform the above equation in order to em-

phasize such a method of study of the turbulence effects. 

Considering the convective inertia caused by the fluctuating 

velocity components as given in Chapter VII-5.1: 

( 
au' 

p u'-ax 
au' + v'-ay 

au' ) + w'-az 

and adding the zero value: 

p u' ( 
au' av' 
ax + ay 

8w' ) + -a z 

from the continuity relationship as it has been demonstrated in paragraph 

VII-3, yields the following expression where terms are grouped in pairs: 

p(u' au' + au' + au' f I av' + au' + u' aw') u'-- v'-- u -- w'--
ax ax ay ay az az 

which becomes: 

( au
12 8u 1v' au'w') p ax + ay + az 
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Now, by introducing these terms (and two similar terms 

obtained for the OY and OZ directions) into the gene~al momentum 

equation, the so-called Reynolds equations are obtained: 

( - - - -) 2 -
2- (au' au'v' au - au - au - au p -+u-+v-+w- = 

at ax ay az 
a --- (p+ pgz) + 

ax f! V' u - p --ax + ----ay + 

( 
av: - av: - a"V - a"V) p -+u-+v-+w- = 

a - 2-- - (p + pgz) + uV' v ( aN 
-p ax at ax ay az ay r 

p -+u-+v-+w- = --(p+pgz)+ 
( 

aw - aw - aw - aw) a -
at ax ay az az 

2- (au'w' uY' W -p --
r ax 

av'w' + -"-':a-'y-'-

a~) 
az 

aw'
2

) +-
az 

inertia 
convective 

inertia 

pressure + 
gravity 
forces 

viscous 
forces 

turbulent 
fluctuation 

forces 

It is noticed that these Reynolds equations are very similar 

to the Navier-Stokes equations as has been shown previously. The 

difference is in the ·convective inertia forces caused by the turbulent 

fluctuations and in the fact that the other forces are expressed as functions 

of the mean value of the velocity or pressure. 

The turbulent fluctuation forces, so-called "Reynolds stresses", 

may be defined by a tensor of rank to where the normal stresses are 

-z 
p u! and the shearing stresses are p u! u! (i-f j) . 

1 1 J 

/ 

VII-5. 3 VALUE OF THE LAME COMPONENTS IN A TURBULENT 
MOTION 

The applied forces are expressed independently of their 

physical nature, as is shown in Chapter VI-1. 3, in order to study the physical 
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effects of the turbulent fluctuation force. It is recalled, for example, 

that the applied forces along the OX axis are expressed by X for the 

body force and the components <T and T of a tensor of rank two for the 

external forces, as follows: 

+ fhxy 
ay 

The mean value of the fluctuation terms such as <T 1 for 

example, is equal to zero by definition: 

1 
T 

r T _!_ <T' dt = o J ax xx 
0 

XX 

Hence, the averaging process applied to these terms (which are either 

constant, such as X , or linear) gives for the applied forces: 

1 
tT X+ ( -ix + 

a 
+ 

a 
Txz) 

dt 
T 

(J" ay T az = 
XX xy 

a - a a 
X+ 

ax 
(J" + By T + rz T 

XX xy XZ 

Introducing this above expression in the Reynolds equation 

instead of their factual values (that is the pressure, gravity, viscous 

terms) leads to: 

= X+ ( 
a - + 

ax (J"xx 

+ 
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which may be written: 

du 
p d t 

+ a 
ay ( :;:- - pu'v') + a ( :;:- - p u'w? xy az XZ 

From this equation it is easily deduced that the fluctuation 

terms may be considered as external forces which are added to the 

other forces defined by normal forces <f and shear stresses T" . Hence, 

these new external forces to be dealt with are: 

Normal force: = 
,2 

crxx-pu = 

Shear stress: = -:;=- - p u'v' = xy 

ali 2 -p+ 2f1 ax -pu' 

(
ali av:) -+ f1 -+- -pu'v' ay ax 

and so on. These new total external forces may also be defined by a 

tensor of rank two similar to the first tensor defined in Chapter V-5. 3. 

VII-5. 4 USUAL APPROXIMATION 

In practice the viscous forces caused by the mean velocity 

are very often negligible in turbulent flow in comparison with the other 

forces, and particularly in comparison with the shear stresses caused 

by the fluctuation terms p u'v' , p u'w' , and p v'w' . However, both 

viscous and turbulent shear stresses are involved in a phenomenon 

where the boundary layer effects have to be analyzed. 

VII-5. 5 CORRELATION COEFFICIENTS & ISOTROPIC TURBULENCE 

By definition, in isotropic turbulence the mean value of any 

function of the fluctuating velocity components and their space derivatives 
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is unaltered by a change in the axes of reference. In particular: 

u'v' ~ u'w' :;;; v'w' = 0 . 

It is evident that isotropy introduces a great simplification 

in the calculations. However, this assumption is usually valid locally 

only. Because of the boundary, the turbulence is not isotropic and the 

products u'v' , u'w' and v'w' may differ from each other. There 

exists a correlation between u' and v', u' and w', and v' and w', 

defined by the coefficients: 

u'v' v'w' 

V ~7 u v 
\}--;-z---;z 

v w 

These coefficients are equal to zero in the case of isotropic turbulence. 

Since the convective inertia forces caused by the fluctuation terms are 

functions of u•
2

, v•
2

, ,2 
w ' u'w', v'w', they may be expressed 

directly as functions of the coefficients of correlation which are dimen-

sionless. 
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VII-1 
~ v 2 ____:, ~ 

Express grad z and V x curl V in terms of u, • u' v, 

v', w, w' for a turbulent flow. 

VII-2 Express the average ratio of dilatational and shear deformation 

in terms of mean and fluctuating velocity components for a turbulent 

flow. 

VII-3 Draw a line u(t) at random on graph paper and determine 

u and [-:?]t. 
and determine 

On the same graph, draw another line v(t) at random 

- r-;-z]t v and Lv and the value of the correlation coefficient 

u' v 1 

VII-4 Demonstrate that the Reynolds equations can still be written: 

au: + au: + au: + au: _l_ [E. + v aU: _ u•2] at u ax 
v 

ay w az = ax p ax 

+ a [v (~~ + av: ]- u 1v 1
] + a [v (~~ + awJ - u'w'J ay ax az ax 
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and two other equations which will be determined. Indic: te the advantage 

of this form of the Reynolds equation. 

VII-5 Write the Reynolds equation in the case of a 'I' ean two-

dimensional motion. Write the Reynolds equation in the base of isotropic 

turbulence [ u 12 = v 12 , uv = 0 ]. 

VII-6 Write the Reynolds equation for a flow in a straight circular 

pipe and demonstrate that the pressure is smaller on the axis of the pipe 

than on the wall. 

VII-7 Determine the expression of the dissipation f1fnction due to 

turbulent fluctuation as a function of ~ u' only, in the ca:le of isotropic 
- y 

turbulence. 
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CHAPTER VIII 

TURBULENCE- EFFECTS - MODERN THEORIES 

VIII-1 SOME PHYSICAL EFFECTS OF TURBULENT FLUCTUATIONS 

The following considerations are purely qualitative. Some 

of them will be quantitatively analyzed in later sections. 

VIII-l. l VELOCITY DISTRIBUTION 

The velocity distribution depends upon the shearing stresses. 

That is, it depends upon viscous force terms and turbulent fluctuation 

termssuchas pu 1v 1 , pu 1w 1 , pv 1w 1 • 

The effects of viscous forces without turbulent fluctuation 

stresses have previously been analyzed for a particular case (see VI-2. l. 2). 

The obtained velocity distribution is in the form of a parabola in the case 

of a laminar flow on a ·sloped plane. 

The effects of the turbulent fluctuations on the velocity distri-

bution are analyzed qualitatively by considering the following mechanical 

analogy. 

VIII-l. l. 1 .An Analogy with Elementary Mechanics 

Consider two warships moving in the same direction at 

different velocities V 1 and V 2 . vl is assumed to be greater than 

V 2 . If a mass M (bullets) is sent at relative speed V' from ship (1) 
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to ship (2)' the absolute value of the velocity of the bullets is v = vl + v•. 

Because of the component V 1 , a momentum is transmitted to ship (2), 

and since V 1 is also greater than V 2 , this momentum tends to accel-

erate the motion of ship (2). (Fig. VIII-1) 

Similarly, a bullet coming from ship (2) to ship (1) tends to 

slow down the speed of ship ( 1). In a word, because of the interchange of 

momentum between these two ships, their velocities tend to become 

equal. 
The "shearing stress", which is really a force in this 

particular case, between these two ships is equal to the momentum 

transfered per unit of time: F = d(~V); that is, T = MV 1(V
1

- v
2

) 

where M is the mass of bullets fired per second. This expression may 

be compared to a term such as p u 1v 1 where p replaces M, v' re-

places V', and u' replaces (V1 - V2). 

VIII-1. 1. 2 Effect of Shearing Stresses on Velocity Distribution 

Consider two fluid layers defined by the mean motion, i.e. 

separated by streamlines tangential to the vector "mean velocity". 

= -(Fig. VIII-2.) Let V 1 and V 2 be the mean velocities of these two layers 

in a given cross section. The instantaneous velocity v 1 is the sum of 

- -1 - =::::; -· -· the mean velocity vl and a fluctuating term vl: vl = vl + vl. vl 
I 

has two components: v 1 , normal to the mean velocity, and v~ in the 

-V 1 direction. 
r 

Because of the normal component v 1 , an amount of fluid 

moving in the vl direction at the mean velocity vl penetrates from 

layer (1) into layer (2), and since its mean velocity vl is smaller than 
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FIGUitE VIII-1 

CHANGE OF MOMENTUM BETWEEN TWO WARSHIPS 

' 

FIGURE VIII-2 

CHANGE OF MOMENTUM BETWEEN TWO FLUID 

LAYERS BY TURBULENCE 
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-the mean velocity V 2 of layer ( 2), this amount of fluid tends to slow 

down the speed of layer (2) . 

Similarly, because of the fluctuating components of the 

velocity, the amounts of fluid penetrating from layer (2) into layer (1) 

tend to increase the velocity of layer ( 1) . In a word, because of the 

turbulence, the mean velocity of the two layers tends to become equal. 

It is seen that the fluctuating velocity forces act physically as external 

forces involving a shearing stress. 

VIII-1. 1. 3 Comparison between Perfect Fluid, Viscous Flow and 
Turbulent Flow 

In a turbulent flow these shearing stresses caused by turbu-

lence are usually more active than the shearing stresses caused by 

viscosity. Hence the mean motion tends to flow similar to an ideal fluid. 

However, at 

p u 1v 1 tend to zero since 

(Fig. VIII-3.) Conversely, 

a boundary layer, the terms of the form 

v' tends to zero beca1,1~e .. of the boundary. 
a2--- .. 

the viscous term fJ. --;:7- increases near 
8y 

the boundary and becomes particularly important in the case of a smooth 

boundary. 

The mean velocity distributions in a pipe, given by Fig. VIII-4 

and corresponding to different assumptions made on the shearing stresses, 

illustrate these previous considerations. 

The quantitative study of the velocity distribution in a turbu-

lent flow depends upon the assumption made on the distribution of the 

value of the shearing stress T • This will be a subject treated in 

further chapters. 
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FIGURE VIII-3 

THE SHEARING STRESSES CAUSED BY TURBULENCE DECREASES 

NEAR THE BOUNDARY, WHILE THE VISCOUS FORCE INCREASES 

--lr---t---- X --+-~-!--- X --1r-+--- X -
IDEAL FLOW LAMINAR FLOW TURBULENT FLOW 

FIGURE V:ITI-4 

VELOCITY DISTRIBUTION IN A PIPE 
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VIII-1.2 IRROTATIONAL MOTION 

A turbulent motion is strongly rotational since the actual 

friction forces have an important effect. However, rotational motion 

occurs at random, like the turbulent fluctuations, and in the case of 

isotropic turbulence the mean motion is irrotational. 

This could be deduced from the velocity distribution pattern. 

It has been seen that turbulent flow represents a velocity distribution 

very similar to the velocity distribution obtained in an ideal fluid, except 

in the boundary layer. Where the turbulence is non-isotropic, the mean 

flow is rotational, but out of the boundary layer the turbulence is nearly 

isotropic in a first approximation. 

Hence, a number of methods of calculation which give the 

flow pattern in an ideal fluid may be successfully applied in a turbulent 

flow, as long as the boundary layer is thin with respect to the main flow. 

It is evident that such an assumption is of particular import-

ance in engineering practice since it permits a knowledge of the flow 

pattern of the mean motion in any convergent short structure, such as 

a bellmouth gallery or a spillway. (Figs. II-13 and II-14.) 

VIII-I. 3 

These considerations are also illustrated by Fig. VIII-5. 

PRESSURE 

= _ P + 2 au _ P;z 
f.Lax Considering the normal forces ( rr] 

au 
and neglecting the viscous term 2f.L ax ' it is seen that a fluctuating 

force has to be added to pressure force. This fluctuating force results 

in an increase of the average pressure value. Some examples illustrate 

this fact. 
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IDEAL FLUID' 
IRROTATIONAL MOTION 

TURBULENT FLOW: 

LAMINAR FLOW: 
ROTATIONAL MOTION 

MEAN MOTION IRROTATIONAL 
EXCEPT IN THE BOUNDARY LAYER 

FIGURE VIII-5 

A TURBULENT FLOW MAY OFTEN BE CONSIDERED AS 

IRROTA TIONAL 
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It is seen in elementary hydraulics that the hydraulic jump 

theory is developed by equating the variation of momentum to the external 

forces, i.e. the difference of pressure forces before and after the jump. 

(Fig. VIII-6.) To be more exact, it would be necessary to add to the 

pressure forces the difference in sh ( p u 12) dh where h is the depth. 
0 

This term is usually not indicated in textbooks and is, in fact, negligible. 

However, this same factor is sufficient to explain why the 

resistance of a body moving with velocity V in calm water is different 

from the resistance of this same body when stationary in a turbulent 

flow of the same mean velocity V . This is the paradox of Du Buat. 

This phenomenon is caused by the difference of impulse of the turbulent 

2 
convective inertia p u 1 acting against the body in a manner similar to 

pressure forces. They exist only because of the turbulence of the flow 

moving around the fixed body. 

VIII-2 TURBULENT FLOW BETWEEN TWO PARALLEL PLANES 

VIII-2. 1 ESTABLISHMENT OF EQUATIONS OF MOTION 

Consider the simple case of uniform steady turbulent motion 

between two horizontal parallel planes, as shown by Fig. VIII-7. Since 

au 
the mean motion is steady the local inertia forces are zero: p 1ft = 0; 

a-v 
p "1ft =0; 

a-w _ 
0 paT - Assuming that the mean velocity vector 

is parallel to the two planes in the OX direction, the components v 
and w along the OY and OZ axis respectively are zero and all the 
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FIGURE VIII-6 

TURBULENT FLUCTUATION TERMS HAVE TO BE ADDED 

TO THE PRESSURE FORCES 
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FIGURE VIII-7 

TURBULENT FLOW BETWEEN 

TWO PARALLEL LINES 
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terms of the Reynolds equations where those quantities appear are zero. 

au 
(See VII-S. 2) Since the mean motion is uniform, ax = 0 . Then it 

is also seen that all the convective inertia terms are zero as in any case 

of uniform flow. 

Now, considering the fluctuation terms, the variations of 

7 --;z 7 II I I vlwl •th t t u , v , w , u v , u w , w1 respec o x are zero 

since the motion is uniform and the turbulence fully developed in the 

considered domain. On the other hand, the variations with respect to 

Y are zero since the two planes are assumed to be infinite, and the 

motion is two dimensional. 

Finally, the Reynolds equations are reduced to: 

0 
ap* + a

2 'U au 1w 1 
= - -ax- fl. --2 - p a z az 

0 
a P'~ aw 12 

= - lfZ - p Bz 

where p~' = p + p gz, while for a laminar flow between two parallel 

planes the Navier-Stokes equations would be written: 

+ 

0 -- ap'~ - --az 

VIII-2. 2 INTEGRATION OF EQUATIONS OF MOTION 

Now, integrating the second of the above equations with 

respect to z leads successively to: 
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l 

0 = a 8z ( P'~ + p w ,2 ) 

-2 
P* + P w' = const. 

Let the pressure at the boundaries be P* . Since w 1 = 0 
0 

at the boundaries, the mean pressure p* at any point of the flow is 

smaller than the mean pressure at the boundary -;:;*" by the quantity 
0 

VIII-2. 3 VARIATION OF THE MEAN PRESSURE IN A TURBULENT 
FLOW 

If U is the mean velocity between the two planes, it has 
0 

u'2 
been found experimentally that =z 

uo 
< 0. 01 and < 0. 0025 . 

Hence the difference: 

p'~ - P* w'2 0 
2 = 

u2 1 u2 
0 0 

is always smaller than 0. 0050.and is neglected. The pressure distri-

bution in a turbulent uniform flow is hydrostatic (at least within 0. 5%). 

Vlll-2. 4 SECONDARY CURRENTS 

Such variations of pressure caused by the fluctuation terms 

give rise to the origin of secondary currents in straight channels and 

non-circular pipes. Secondary currents take place when neil-symmetrical 

effects of the turbulent shearing stresses exist in the flow, that is, each 
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time that the boundary is non-circular. 

These secondary currents go from the zone of high shearing 

stress to the zone of lower shearing stresses as shown by Fig. VIII-8. 

They have a tendency to equalize the shearing stresses at the boundary. 

Hence they are secondary only in name: they partly justify the use by 

engineers of the empirical tool, so- called hydraulic radius. It is to be 

recalled that the definition of hydraulic radius is based on the assumption 

that the shearing stress at the boundary is a constant. The limitations 

of applicability of the hydraulic radius definition must be known. A 

change in the secondary current pattern in a flow has an effect on the 

head loss which is not negligible. However, this effect is neglected in 

hydraulics because it is not yet known. 

VIII-3 MODERN THEORIES ON TURBULENCE 

VIII-3. 1 THE UNKNOWNS IN A TURBULENT FLOW 

In Chapter I, it was seen that problems in hydraulics consist 

of finding the four unknowns, u, v, w and p . For turbulent flow, the 

four unknowns are u, v, w and p However, four other unknowns, 

u', v 1, w 1 and p 1 have been introduced, theoretically requiring four 

other equations unless the fluctuation terms may be neglected. 

It is seen that p 1 does not appear in the Reynolds equation 

for the mean motion because of the linearity of the pressure forces. 

Moreover, p 1 is usually very small in comparison with p p' should 

be taken into account only for some very special problems which are not 

yet very well known. 
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A relationship is established between the fluctuation values 

u 1, v 1, w 1 (or more specifically functions of them, such as u 1v 1, v 1w 1, 

u 1w 1) and the mean values u, v, w . So, the fluctuation terms are 

expressed as functions of the mean values u, v, w . 

More recent methods consist of applying probability calculus 

and random functions since a turbulent fluctuation is random in nature. 

Although progress has been made in the statistical theory of turbulence, 

only isotropic and homogeneous turbulences are well analyzed. However, 

isotropic t11rbulence is an idealized case never encountered as is the 

abstract concept of irrotationality never encountered. Further serious 

investigation into non-isotropic turbulence is necessary. 

VIII-3.2 BOUSSINESQ THEORY 

In order to simplify the Reynolds equation, Boussinesq 

introduced the turbulent exchange coefficient E , dimensionally equal 

to the coefficient of viscosity fl. • In the case of uniform flow parallel 

to a plane in the ox direction {u = u(y) v = 0 , w = 0), e is 

defined by the equality p u 'v' = - e 
dil 
dy 

Then the shearing stress 

becomes = (fl. + e) 
dil 
cry instead of 

given by a linear relationship. 

From this relationship it may be seen that the fluctuation 

term would act similar to the viscous term, their effect being simply 

added linearly. 

E >» fl. and 

They are of a different 

dil 
[T]~Edy' 
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FIGURE VIII-8 

SECONDARY CURRENTS 

IN A TRIANGULAR PIPE 

y 

u + ctli 

-
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FIGURE VIII-9 

MIXING LENGTH- NOTATION 
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Such a relationship gives a velocity distribution similar to 

that obtained in a laminar flow from the Navier-Stokes equations. Since 

it would be necessary to consider that e varies with respect to space, 

the Boussinesq theory is a failure. However, in some cases relative to 

the motion of atmospheric layer, e is approximately a constant and the 

Boussinesq assumption is applied to obtain a result at a first order of 

approximation. 

VIII-3. 3 PRANDTL THEORY FOR MIXING LENGTH 

The mixing length theory has been introduced by Prandtl by 

analogy with the mean free path as it is defined in kinetic theory of gases. 

It is the momentum transfer theory. 

Consider the flow u = u (y), v = 0, w = 0 parallel to 

the OX axis. (Fig. VIII-9.) The mean velocities are u and u + du 

at two points on a perpendicular to the boundary Y = 0 . 

According to Prandtl, it is assumed that the fluctuation terms 

u 1 and v 1 are proportional to the difference in velocity d u which is 

equal to: du du 
= d y dy ' or /u'/ and such that 

dU: 
/v'/~ldy' l is the "mixing length" and is proportional to dy . 

l may be physically considered as the length which may be traversed 

by a ball of fluid perpendicular to the mean velocity vector -;; . It is 

evident that according to this definition, .R. is equal to zero at the boun-

dary since a ball of fluid cannot pass through the boundary . 
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On the other hand, u 1v 1 always has the opposite sign of 

If one considers a ball of fluid moving from the boundary to the middle 

of the flow, v 1 > 0 since it is moving from a layer where u is smaller 

to a layer where u is larger. It causes a slowing down of the motion, hence 

u 1 < 0 . Conversely, if one considers a ball of fluid moving toward the 

boundary, v 1 is negative while u 1 is positive. Since u 1v 1 is always 

negative, the shearing stresses caused by turbulence, T = - p u 1v 1 , 

are positive, as is 

If a velocity distribution has been considered such that 

is negative, it will be similarly found that - p u 1v 1 is always negative. 

Consequently, in any case, has the same sign as 

emphasized by writing: 

[ T] = 1 2 I d u I d u 
p dy dy 

In the general case, 

du 
= fL d y + I~~ I 

du 
dy ' 

which is 

This function may be linearized with the help of the Boussinesq coeffi-

cient e (See VIII-3. 2): 

Despite a more complex mathematical form, the main advan-

tage of the Prandtl theory over the Boussinesq theory is that it is easier 

to assume the value of 1 than the value of e 
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VIII-3. 4 TAYLOR'S VORTICITY TRANSPORT THEORY 

Instead of considering the change of momentum from one 

layer to another as Prandtl did, Taylor considered the change of moment 

of momentmn. 

This theory sometimes gives the same result. For example, 

the velocity distributions in a two-dimensional jet given by both theories 

are the same. However, when the mixing length is a function of the 

normal distance from the boundary, different results are obtained. 

VIII-3. 5 VALUE OF THE MIXING LENGTH 

Now the value of the mixing length has to be determined. 

Various formulas are proposed. 

The first kind of formula for the mixing length is purely 

empirical and valid only for special cases. Some examples are: 

a) At the boundary of a jet l is proportional to the distance 
from the orifice. 

b) Against the wall of a pipe l is assumed to be propor
tional to the distance y from the boundary: l = k y 
where k is a constant. This means physically that 
the amplitude of a turbulent fluid ball is zero at the 
boundary and increases linearly with the distance from 
the boundary. 

Introducing this value in the Prandtl formulas yields: 

k
2 2 

= p y 

If [ T J is considered as a constant, a "universal velocity distribution" 

is obtained by integrating with respect to y : 
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u =fi (~ Lny + constant) 

[ T] has been considered as a constant by Prandtl in the 

theory of the boundary layer along a flat plate. The values of the con-

stants are determined by experiment. In a pipe [ T] is considered as 

a linear function of the distance from the wall as it is explained in 

elementary hydraulics. Both cases are theoretically approximate, but 

give results close to factual measurements. 

/ / 

VIII-3.6 VON KARMAN'S SIMILARITY HYPOTHESIS 

Von Karm;;_n tried to find a value for l independent of the 

kind of flow, according to two similarity assumptions: 

a) The turbulence mechanism is independent of viscosity 
(except near a smooth boundary). 

b) The turbulent fluctuations are statistically the same at 
any point but change only in time and length scales. 

From this assumption Von Ka"rma:n found that 

du 
dy 

as Prandtl, and 

l "' k Hence [ T] = 

where k is a universal constant, experimentally found to be equal to 

0.4 . 
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VIII-3. 7 OTHER THEORIES 

Other theories were proposed to improve these semi-empirical 

formulas. Particularly, in order to avoid E = 0 when ~~ = 0 , for 

example, in the middle of a pipe, Prandtl proposed: 

But it is difficult to know the best value of .R. 1 
• 

These various theories, and particularly the Prandtl and 

Von Ka:rm~n theories, have been very successfully applied in a number 

of practical cases (wall, pipe, etc.) . However, they do not seem so 

successful when the flow is not uniform (bend, divergent, etc.). Hence, 

the solution to problems in turbulence will be the use of statistical 

mechanics, as introduced by Taylor, Von Ka:rm~n and Kampe de Feriet. 

VIII-4 

VIII-4. 1 

SOME CONSIDERATIONS ON THE LOSS OF ENERGY IN A 
UNIFORM FLOW 

A REVIEW OF ELEMENTARY HYDRAULICS 

It has been seen in elementary hydraulics that the head loss 

in a uniform flow is: 

a.) Proportional to the mean value through a cross section 
of the velocity V when the flow is laminar; 

b) Proportional to its square value v2 when the flow is 
turbulent and the boundary is rough; and 

c) A complex intermediate function of V (Vn) when the 
flow is turbulent and the boundary is smooth. ( l < n < 2) 
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VIII-4.2 A THEORETICAL EXPLANATION FOR THE VALUE OF 
HEAD LOSS 

The above result may be partly explained by the following 

considerations. A part of the kinetic energy of the primary (or mean) 

motion of a turbulent flow is continuously absorbed to provide the turbu-

lent fluctuations. The kinetic energy of these turbulent fluctuations is 

a quadratic function of the fluctuating velocities. Since all these fluctu-

ations are finally absorbed by friction, the loss of energy in a turbulent 

flow is a quadratic function of the fluctuating velocities. 

On the other hand, the fluctuating velocities are roughly 

linear functions of the mean velocities. It has been seen that 

du 
= " p u'v' r dy - = .. du + 1 2/duj du 

r dy p dy dy 

au: 
As long as f.L 8y is negligible, u'v' is a quadratic function of u, 

-2 2 and the head loss is proportional to u , that is, proportional to V 

In the case of a smooth boundary, the term ~~ is no longer 

negligible in the boundary layer. Hence the head loss is a complex 

intermediate function of u , that is, a complex function of V . 

In the case of a laminar flow, [ T) is simply equal to 

dU: 
T = f.L d y and the head loss is a linear function U: (u = u), hence a 

linear function of v. This topic is further developed in Section XIV -4. 

VIII-4. 3 WORK DONE BY TURBULENT FORCES 

It is evident that because of the turbulence the loss of 

energy in a turbulent flow is much greater than in a laminar flow. It 
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is important to note the following considerations: 

The mean value of the viscous forces per unit of volume has been 

found to be: z- z- z-
fL \1 V = fL \1 V + fL \1 V' 

where 

2-
fL \1 V' = = 0 

The term fL \/
2 Y is small by comparison to the kinematic 

forces caused by turbulent fluctuations. The mean value of the viscous 

forces caused by these turbulent fluctuations is zero. 

If instead of considering the mean forces, one considers the 

mean value of the work done by these forces, quite a different result is 

obtained. C ·d f 1 h h · f au Th" f · onsl er, or examp e, t e mean s earul::g orce J.L ax· 15 orce 18 

au: 
equal to fL -a x since au' 

fL ~ 

this force in a unit of time is: 

2 
and by unit of volume: ~ ( ~) 

respect to tilne is successively: 

= 0 . The work done by 

The mean value of this work with 

2 

w = ~ ( ~) = -1 ( ~~ a , )2 + u -ax 
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The double product being zero: 

au au• 
2 ax ax = 2 

au: a 
ax ax i S. T u 1 dt = 

0 

0 

one finally obtains: 

- 2 
w = i ( ~~) + i (~~') 

2 

The second term is always positive, hence its mean value is not zero. 

Moreover, u' is generally smaller than u , but the 

variation of u' with respect to space (in this expression with respect 

to x : 
au• ax ) is usually greater than the variation of u with respect 

t ( . th' · 'th t t ~-xu). The f1'rst term o space 1n 1s expressiOn Wl respec o x : 

1::. (a'U)2 
2 ax may often be neglected and 

Hence the loss of energy and the head loss are mainly due to the turbulent 

fluctuations. 

VIII-4. 4 DISSIPATION FUNCTION IN A TURBULENT MOTION 

A similar result may be obtained by considering all the terms 

of the dissipation function iji presented in Chapter V -5.5 in which 

u, v, w are replaced by U, V, W, u 1
, v 1

, w 1 
• Then it is found that 

the mean value for <P is the sum of two terms: <t>m and <Pt 

where iji is a function of the mean values u, v, w 
m 

only, and is small by comparison with ijit , a function of u 1, v', w 1 only. 
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~(au' 2 
8u' 8v')

2 
] 'Pt = f!. Ll 1iX) + . . . + ( ay- + 1iX + . . . 

pt is the part of energy which is absorbed by friction because of the 

turbulent fluctuations. 
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VIII-1 Explain why ( T] is considered as a constant along a per pen-

dicular to the wall in the boundary layer theory and varies linearly with 

distance from the wall in the case of a uniform flow in a pipe or between 

two parallel planes. Explain the limitation of these assumptions. What 

is the criterion for the pressure distribution on which such assumptions 

are based? 

VIII-2 It has been found experimentally that 

where D is the distance between two parallel planes. Give the expres-

sions for ( T] and Prandtl1 s mixing length t as functions of y. 

VIII-3 Using the von K~rm~n similarity rule 

and the relationship 

8p 
i) X = constant 

along the centerline, derive the following universal velocity distribution 
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law for a rectangu~ar channel of width 2 h 

where u is the velocity at the centerline y = 0 and T is the shear 
0 0 

stress at the wall. I 

VIII-4 It will be assumed that the velocity distribution in a cylindrical 

pipe of radius R is given by the one-seventh power law, i.e., 

where U is the maximum velocity on the centerline. Then give an 

expression for the Prandtl' s mixing length as a function of r . 

•. 
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CHAPTER IX 

FLOW IN A POROUS MEDIUM-- LAW OF DARCY 

Conclusion of Part I 

IX-1 AVERAGE MOTION IN A POROUS MEDIUM 

IX-l. l THE BASIC EQUATIONS 

Because of their importance in engineering practice where 

a great number of applications are encountered, the laws governing flow 

in a porous medium have. to be studied in detail. 

The basic laws to be applied are again the continuity rela-

tionship and, usually, the momentum equation. The momentum principle, 

expressed by the Navier-Stokes equations, is theoretically valid for this 

kind of motion. However, because of the complexity of the boundary 

conditions (since V = 0 at the surface of every grain of the porous 

medium), this equation is no longer useful in this form. Some approx-

imations and transformations must be performed. 

IX-l. 2 SIMPLIFICATION OF BOUNDARY CONDITIONS FOR THE 
MEAN MOTION 

First of all, the grains are assumed to be distributed at 

random. The flow obeys statistical laws. (The case of non-isotropic 

porous medium, such as varved clays, necessitates the consideration 

of a coefficient of permeability which varies with direction. ) Hence, 
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instead of dealing with the real values of velocity and pressure, varying 

in a very complex manner, only the mean values need be considered. 

It is evident that such a method considerably simplifies the 

boundary conditions since these conditions have to be expressed only to 

the boundaries of the mean flow, i.e. the limits of the porous medium 

and the free surface. 

IX-l. 3 DIFFUSION IN A POROUS MEDIUM 

It is known that in a laminar flow the mixing process is very 

slow since it is caused only by molecular agitation, while in a turbulent 

flow it is rapid since it is caused by the turbulence fluctuations. In a 

laminar flow through a porous medium, because of the random nature 

of the particle distribution, it may be observed that dye diffuses quickly 

although the flow is laminar. (Fig. IX-l.) The concentration curve is 

given by a Gaussian shaped distribution. 

FIGURE IX - l 

DIFFUSION THROUGH A POROUS MEDIUM 
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The angle of the cone of diffusion is a function of the char

acteristics of the porous medium and is approximately 6° . This angle 

increases when the flow becomes turbulent; it is then a function of the 

Reynolds number as defined in Sec. IX-3. 1 . 

IX-1. 4 DEFINITION OF THE MEAN MOTION IN A UNIFORM FLOW 

The most simple way of defining the mean velocity consists 

of considering a unidimensional porous medium as shown by Fig. IX-2 

The mean velocity or "specific velocity" is the ratio of the 

discharge Q to the total area A , V = Qj A, independent of the void 

coefficient. 

Now, if the motion is referred to a three-axis system of 

coordinates OX, OY, OZ (see Fig. IX-2), the three real velocity 

components, u, v, w are different from zero. Their mean values in 

the porous medium are respectively: 

u = 

v = 

w = 

V;l. SSSVol. u d(Vol.) = 1 ss u dA = V 
A 

1 
Vol. 

vd(Vol.) = iSS vdA = 0 
A 

SSS w d(Vol.) 
Vol. 

= 1 SS wdA = 0 
A 

where Vol. is the total volume of the porous medium. The mean 

values with respect to space are written with two bars instead of one to 

228 

- ' 

4 

I r·· 



- _,1 .••.• 1 

be differentiated from the mean value with respect to time (V) as used 

in studies of turbulent motions. 

IX-1. 5 GENERAL DEFINITION OF THE MEAN MOTION 

For a more complicated pattern of the mean motion, as 

,. shown by Fig. IX-3, where a variation of the mean v:alue of the velocity 

with respect to space also exists, the mean value of the velocity vector 

has to be defined in an elementary volume t:,. Vol. = Ll.x Ll.y Ll.z of 

porous medium as follows: 

1 

s s tx t:,. y Ll.z 
-v = V dx dy dz t:,. X t:,. y t:,. Z 

and along three coordinate axes: 

- 1 SStx t:,.y Ll.z 
u dx dy dz u = Ll.x t:,. y Ll. z 

- 1 

s s tx t:,. y Ll.z 
v dx dy dz v = Ll.x t:,. y L!.z 

w = 
ZSx zs~ Ll.z SStx Ll.y Ll.z 

w dx dy dz 

v = 0 in the case of a mean two-dimentional flow as that shown by 

Fig, IX-3. 

Such an elementary volume of porous medium must theo-

retically be large enough for the averaging process to be valid. Hence, 

• 
Ll.x Ll.y Ll.z must be large enough to contain a number of grains distributed 

at random. 
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FIGURE IX- 2 

MEAN UNIFORM FLOW THROUGH POROUS MEDIUM 

FIGURE IX- 3 

MEAN NON- UNIFORM FLOW THROUGH POROUS MEDIUM 
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On the other hand, .6-x .6-y .6-z must theoretically be small 

enough to be considered as infinitely small dx dy dz in order to apply 

the methods of differential calculus. 

In other words, .6-x .6-y .6-z has to be large enough for the 

averaging process to be valid, but small enough to be considered as in-

finitely small in the mean motion. For both these opposing conditions 

to be satisfied the gradient of real velocity has to be much greater than 

the gradient of the mean velocity. This may be physically translated as: 

a large flow pattern through relatively small grains or pebbles. A small 

flow pattern around s.ome large rocks does not obey the statistical laws 

which are valid for a mean motion. 

IX-1. 6 PRESSURE 

Similarly the mean pressure is defined by: 

p = .----.,..c.l --:-- sss p dx dy dz 
.6-x .6. y .6-z .6-x .6. y .6-z 

-The variations of p around p are mainly caused by the curvature of 

the paths around the grains, Such variations are proportional to the 

convective inertia, that is proportional to the square of the velocity, 

which is usually negligible. 

A piezometer inserted in a porous medium may integrate these 

variations if it is large enough. 

IX-1. 7 BOUNDARY CONDITIONS 

The boundary conditions are expressed as a function of the 
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mean velocity at the boundary of the porous medium instead of being 

expressed as a function of the real velocity at the boundary of each 

grain, 

IX-1. 8 ANALOGIES BETWEEN TURBULENT FLOW AND FLOW 
THROUGH A POROUS MEDIUM 

Interesting theoretical analogies may be made between the 

methods of studying turbulent flow and flow through a porous medium. 

In both cases the mean velocity and mean pressure are 

dealt with because of the random nature of the flows. In the case of 

turbulence the mean values are defined at a given point with respect to 

time, while in the case of flow through a porous medium the mean values 

are defined with respect to space. (see VII-1. 3.) 

1 sT.._ 
T V dt , 

0 

= v = 
1 

Vol. 

__.. 
V d(Vol.) 

The time T has to be long enough for the averaging process 

to be valid, but short enough to take account of whether the mean motion 

is steady or unsteady. (See VII-1. 4.) The elementary volume ~x C.y C.z 

must obey similar considerations with respect to space as has been 

discussed in IX-1. 4 . 

The fluctuation terms u 1, v 1, w 1, p 1 found in the studies 

of turbulence exist also with respect to space in the studies of flow 

through a porous medium, and their mean value is also zero by definition: 
..... :::; 
V = V + V' . 
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1 SSLx6y 6z 
-V 1 (or p 1) dx dy dz = 0 

6x 6y 6z 

The momentum equation of the mean motion in a porous 

medium is obtained by averaging each of the forces with respect to 

space, as has been done with respect to time in the study of turbulent 

flow, This will be the subject of Sec. IX-2 . 

Then, both turbulent flow and flow through a porous medium 

are strongly rotational as far as the real :motion is concerned. However, 

their mean motions may be irrotational. (See VIII-1. 2 and IX-2. 5.) 

An isotropic turbulent flow may be considered analogous to 

flow through an isotropic medium. 

Turbulent flow through a porous medium will have to be 

studied by considering the mean values with respect to both space and 

time: 

IX-1. 9 

= .... 
v 1 

6x 6y 6z Sss -V dx dy dz dt 
6x 6y 6z 

CONTINUITY RELATIONSHIP 

Considering the mean velocities with respect to space 

passing across the plane sides of a cube defining an elementary volume 

of a porous medium, it is found by a demonstration similar to that given 

in Chapter UI that the continuity relationship is: 

+ 
= aw 

+ -az = 0 
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That is, the continuity relationship for the mean motion has the same 

mathematical fo;rm as for other kinds of flow. 

IX-2 LAW OF DARCY 

IX-2. 1 CAPILLARITY EFFECT 

First of all, it must be noted that for certain flows with a 

free surface through a very fine porous medium, the capillarity forces 

could have an appreciable effect on the flow pattern and the discharge 

through it. For example, the rise of the free surface in an earth dam 

of grain size near 0. 1 mm. is about one foot. (Fig. IX-4J 

THEORETICAL LINE 
OF SATURATION 

FIGURE IX-4 

ZONE 

CAPILLARITY EFFECTS IN A FLOW THROUGH POROUS 

MEDIUM 
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IX-2. 2 THE PRINCIPLE OF THE AVERAGING PROCESS 

Insofar as these capillarity effects may be neglected, the 

momentum equation expressed as a function of the mean values is given 

by the same averaging operation with respect to space as was done for 

a turbulent flow with respect to time. 

Since the sum of the real value of the different forces involved 

is always zero, 

inertia 
force + gravity 

force + pressure 
force + friction 

force = 0 

the sum of their mean values with respect to space is also equal to zero: 

Mean 
Value with 
Respect to 

Space 
[ 

inertia 
force + 

IX-2.3 APPROXIMATION 

gravity 
force + pressure + 

force 
friction] = 

force 0 

For a.first approximation, the inertia forces are neglected. 

The local inertia is neglected because the variation of the ground water 

table is usually very slow. From this point of view, unsteady motions 

through a porous medium are usually studied as a succession of steady 

motions. (See IV-5.1.) However, some special problems require the 

consideration of the local inertia, for example, perviousness of a 

rockfill breakwater to periodical gravity waves. 

The convective inertia is also neglected. Since the velocity 

is usually very small, the square of the velocity and terms which are 

functions of the square of the velocity (such as the convective inertia 
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forces) are of a second order of magnitude in comparison with other 

terms. (See IV-5. 2. 1.) The range of validity of such an assumption is 

studied further. 

IX-2. 4 MEAN FORCES-- LAW OF DARCY 

Finally the momentum equation is reduced to an equality of 

applied forces: 

L\x L\~ L\z SStx L\y L\z (-
a(p + p gz) + f.L 1/ u) dx dy dz 

ax = 0 

Two similar equations may be written along the two other 

axes OY and OZ • These three equations are reduced vectorially 

to: 

L\x L\
1 

L\z sss [- grad(p + p gz) + f.L v
2 vJ dx dy dz = 0 

· · Y L\x L\y L\z 
' . . 

In calculating these equations as functions of the mean value 

= V and p , it is to be noted that they include: 

one constant force: gravity force 

two linear forces: pressure force and viscous force 

Following the same process of integration as that used in 

turbulent motion (see VII-2), it is found that: 

ZSx zsl ZSz sss -gr:a(p + P gz) dx dy dz = 
y L\x L\y L\z 

---grad ("p + p gz) 

Now consider the viscous forces. Since they are linear, it is 

reasonable to expect that they are proportional to the mean velocity V 

as long as there are 
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no quadratic effects caused by the convective inertia and turbulence. 

Hence it is written that they are proportional to fl. V such that 

1 rss 2 ~x {:,. t:.z j fl. 'i1 V dx dy dz 
Y t:.x 6 y 6 z 

where k is the permeability of the porous medium, an empirical 

function of the void coefficient and grain size. K = ~ is the so-called 
fl. 

"hydraulic conductivity" which measures the permeability of the porous 

medium to the fluid. Hence the "Law of Darcy" is finally written: 

= K 
a (p + p gz) K a 'P·~ u = ax: = '"""l1X 

- a = p gz) K a I>·~ v = K ry (p + = -ay 

- K a - p gz) K 
ap~, 

w = 8z (p + = ""FZ 

or vectorially: 

-- -- (p + - P* v = K grad p gz) = K grad 

In a non-isotropic porous medium, K has different values 

-- K , K , K -- along the three components axes OX, OY and OZ 
X y Z 

respectively. 

This law states that the mean velocity of the fluid flowing 

through a porous medium is directly proportional to the pressure gra-· 

dient acting on the fluid. p* = p + p gz is the piezometric head. The 

simplification of the friction term is of an empirical nature and it seems 
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difficult to justify such a law rigorously. It would be necessary to go 

through the calculation for a flow as shown in Fig. IX-1 . On the other 

hand, it would seem reasonable to think that the Navier-Stokes equations 

are no longer valid, from a microscopic point of view, for a flow passing 

through the very fine channels of a porous medium, like porous china, 

which would probably require a study based on molecular agitation. This 

subject is relevant to the kinetic theory of liquids. 

IX-2. 5 IRROTATIONAL MOTION AND FLOW THROUGH POROUS 
MEDIUM 

It is important to note that such a mean motion defined by 

the law of Darcy is always irrotational. 

verify that 

Introducing the value u, ~. w given above, it is easy to 

au: 
ay -

a 
ay 

= 0 since: 

Similar demonstrations may be done for the two other conditions given 

in Chapter II (II-5. 2) . However, a turbulent flow through porous medium 

cannot have its mean motion defined by a potential function. It is 

nee e s saril y rotational. 

IX-2. 6 VELOCITY POTENTIAL FUNCTION 

The calculation of a velocity potential function <j> follows 

the same rules as for a free flow fi.eld of an irrotational motion. How-

ever, it should be noted that <j> normally has a slightly different 

definition for a flow through a porous medium than that given 
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in Chapter II. The velocity potential function for a flow through a porous-

- aq, - aq, = aq, 
medium is uaually defined by u = -K 1lX, v = -K try, w = -K rz, 

=::;. _......, 
or V = -K grad cp . Substituting these values into the Darcy equations 

gives: 

u = aq, 
-K ax;: a 

- K a x (p + p gz) 

and two similar equations, from which it is easy to see that cp is equal 

to the piezometric head: p'~ = (p + p gz) = cp Sometimes cp is 

also defined by: {ppg + z) = P* 
pg 

- aq, and u = -K p g ax , etc. Fig. 

IX-5 illustrates the value and the physical meaning of cp corresponding 

to such a definition. The velocity potential function is a constant along 

the sides of the dike and decreases linearly with z at the free surface 

inside the dike. Hence, a constant 6-z corresponds to a constant value 

for 6-cp . This statement will be developed in Sec. XI-6. 3. 1 on the 

flow net method. 

IX-3 RANGE OF VALIDITY OF THE LAW OF DARCY 

It has yet to be seen that the value of the permeability k is 

a function o:f the porous medium characteristics alone. This is true 

only insofar as the Reynolds 1 number is small. 

IX-3. 1 REYNOLDS' NUMBER 

The Reynolds' number of a flow through a porous medium 

is defined by --v where V is the mean or specific velocity as pre-
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viously defined, and li the diameter of a grain. The diameter of a 

grain is easily known while the diameter of the "channels 11
, as used for 

pipe, would be difficult to define. This process assumes that there is 

a simple linear relationship between these "channel 11 diameters and the 

grain size. However, in a porous medium made of a large grain size 

distribution, the small particles have a tendency to reduce the size of 

the "channel"· (Fig. IX-6.) The "channels 11 have the same order of 

magnitude as the smallest particles. Hence, it is more exact in this 

cas~ to define the Reynolds 1 number with the help of the smaller grain 

sizes. The "characteristic diameter 11 li may be considered empiri
c 

cally as the average size corresponding to the lowest 1 0°/o limit. 

More accurate considerations on this problem would require further 

investigation. 

IX-3. 2 CONVECTIVE INERTIA 

Although the velocity in a porous medium is very small, 

the variation of velocity with respect to space is large. It is easy to 

recognize this since the actual paths in a porous medium are strongly 

curved. Hence the convective inertia has an appreciable influence on 

the motion when the Reynolds 1 number is greater than one even before 

the appearance of turbulence. This convective inertia being quadratic, 

the following so-called law of Forchheimer is more nearly true than Darcy' s 

law. 
~ = -=i= :::; .:;: n 

grad p'~ = a V + b V IV I 

where n lies between 0 and 1 
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AT THE FREE SURFACE 

{ 
L'.z I = L'.z2 .. .. 

"""'' = """'2 ... . 
z = H 

FIGURE IX- 5 

VALUE OF THE POTENTIAL FUNCTION FOR A FREE 

SURFACE FLOW THROUGH POROUS MEDIUM 

FIGURE IX- 6 

THE "CHANNELS" ARE REDUCED BY THE 

SMALLER PARTICLES 
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IX-3. 3 TURBULENCE IN POROUS MEDIUM 

At larger Reynolds 1 numbers (R )> 1 00), the flow becomes 

turbulent. The above Forchheimer equation may still be applied but 

the values of the coefficients a and b are changed. 

At very large Reynolds 1 numbers, the linear term 

becomes negligible, and the coefficient n tends to the value 1 

:;: 
aV 

Then the coefficient b for the same voi,d coefficient and the same grain 

size distribution is a function of the roughness of the pebbles. A 

similar phenomenon has been found in elementary hydraulics with 

turbulent flow in a rough pipe. 

IX-3. 4 PERMEABILITY COEFFICIENT 

The value of the permeability coefficient is given by dimen-

sional analysis and experimental results. In the general case, it is 

vo 
Reynolds' number __ c_ , void coefficient 

2 v 
v go . Many functions have been proposed, 

found to be a function of the 

E , and the Froude number 

too numerous to be compared and analyzed in this book. Some o:f them 

are more or less theoretically justified. 

For a first order of approximation, the following equation 

may be used for any kind of flow: laminar or turbulent. This empirical 

law has been established experimentally for a range of Reynolds' num-

2 5 
bers between 10 and 10 . 
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2 
b.H c v2 c ( 1 - •) v2 X X 

b.L = --;- 2g 6 or zgo 
E c E c 

where b.H is the gradient of pressure (b.H f.LV ) and c is b.L = k"""" b.L X 

the drag coefficient of a rough sphere for the same value of the Reynolds 1 

number (Fig. IX-7) (see Section XIV -5.1). For a laminar motion with a 

negligible convective inertia (R < 1), 24 c = _ ____:::..._ 
x V 6 jv 

c 

Hence the Darcy coef-

ficient is found to be equal to ~ = 12 f.L or 
p g 62 .s 

12 .u 
2 

pg6 

10 

1'\ .. 

-2 
10 

""' ' 

-I 
10 

""' "' 

FIGURE IX-7 

c 

""' "' 
SMOOTH SPHERE-

ROUGH SPHERE-........._ 

10 
2 

10 

V8c 
v 

3 
10 

4 
10 • 10 

c 

\ 

DRAG OF A ROUGH SPHERE vs. REYNOLDS' 

NUMBER 
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IX-1 Calculate the total flow dis charge through a porous medium 

of total cross section A = 1 ft
2 

and length in the direction of the flow 

-1. = 3 feet as a function of the head. The significant grain size diameter 

is li = 0. 3 mm and the void coefficient is e = 0. 40. One will also make 

use of Figure IX-2 for determining the head loss coefficient. Determine 

the head under which the law of Darcy no longer applies, and the head 

under which the turbulence appears. Repeat the same calculation when 

the porous medium is composed of two successive layers: -1. = 1. 5 feet 

and li = 0. 5 mm; -1. = 1. 5 feet and li = 0. 1 mm; and three successive 

layers of length -1. =· 1 foot each and li = 0. 1 mm, 0. 3 mm, and 0 .. 5 mm 

respectively, of same void coefficient (kinematic coefficient of viscosity 

v = 1. 076 x 10- 5 ft
2
/sec). 

Answer: 

One layer 

c 
X 

= L'IH 
2SL = ex 

Q = 1.43·10- 2 L'IH 3 
ft /sec 

L'IH < 0. 76 - the Darcy law is valid 

R > 100, for turbulence 

From Figure IX-7, c = l 
X 

L'IH > 319 feet for turbulence, 

Two layers 

2 = 12 v Q ( l - e) \ L'l-1. 
L'IHtotal g A e3 L? 
Q = 3. 06 ·10- 3 L'IH 

24 v 
--v6 

L'IH < 2, 14 ft - the Darcy law is valid 

L'lloi > 550 ft for turbulence 
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Three layers 

Q = 4. 15 ·10- 3 6H 

6H < 1. 58 ft - the Darcy law is valid 

6H > 424 ft for turbulence 

IX-2 Consider a flow through a porous medium with a cross 

section A = 100 ft
2 

and a length in the direction of the average flow 

L = 100 feet.. One wants to build a scale model of this porous medium 

at a scale A. = 1/10 such that a = 1 ft
2 

and t = 10 feet, and with the 

same void coefficient 

similitude of Froude, 

<. One wants the discharge to obey the rule of 

i.e., q=A.
5

/
2

Q underahead 6h dl= 
moe 

6h x A.. For this purpose the grain size of the model 6 prototype m 

will be related to the grain size of the prototype 6 by the relationship 
p 

6 = K A. 6 • Determine the value of K in the case where H = 100 feet, m p 

6 = 1 mm, and E = 0. 40. 

Answer: 
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SUMMARY OF PART ONE 

THE UNKNOWNS TO BE FOUND 

To solve a problem in hydraulics, there are two unknowns 

to be found: the velocity V(u, v, w) and the pressure p as a function 

of space coordinates x, y, z and time t . 

However, for turbulent flow, the mean motion with respect 

-to time is dealt with. The two unknowns are V(u, v, w) and p The 

fluctuations of velocity V(u', v~ w') give rise to some convective inertia 

forces acting on the mean motion similar to the external forces. 

For flow through a porous medium the mean motion with 

respect to space is dealt with. The two unknowns are V(u, v, w) and 

p . 

In all cases (ideal fluid, laminar flow, turbulent flow, flow 

through porous medium) the two unknowns -- velocity and pressure, 

real or mean with respect to time or with respect to space -- are 

obtained by the continuity relationship and the momentum equation. 

THE CONTINUITY EQUATIONS 

The continuity relationship has the same mathematical form 

for four kinds of motion. It is expressed as a function of the real 

velocity V(u, v, w) for an ideal fluid and a laminar fluw: 

au + ax av + ay 
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It is expressed as a function of the mean velocity with respect to time 

for a turbulent flow: 

= 0 

It is expressed as a function of the mean velocity with respect to space 

for a flow through a porous medium: 

au + rx av + 
ay = 

THE MOMENTUM EQUATIONS 

0 

The momentum equations are written below along the OX 

axis only for the four cases to be considered. 

Inertia 

Perfect fluid du 
Eulerian Equation P TI 

Laminar Flow: du 
Navier-Stokes p TI 
Equations 

Turbulent Flow 
du 

p TI 
Reynolds (or 
Boussinesq) 
Equations 

Flow Through 
Porous Medium 0 
Darcy's Law when 

= 

= 

= 

= 

Pressure 
Gravity 

Mt 
ap* - ax-

a P'~ - ax-
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+ 

+ 

+ 

Viscous 
Friction 

fl. \/2u 

2-
fl. \1 u 

~ = u 

-

Convective 
Inertia caused 
by Turbulence 

( au•
2 au•v• 

p-ax + 1Jy 

+ au 1w') az 



Since similar terms are found in these four equations, 

similar methods of integration may be used. Some of them are only 

valid after some approximations or some assumptions have been used 
;,, 

to simplify the basic equations. For example, neglecting the turbulent 

fluctuation terms and the viscous term, a turbulent flow behaves as a 

I 

j 
perfect fluid. 

Hence, in order to simplify the writing and for more gener-

-ality, only the notation V(u, v, w) and p are used in the following 

chapters since it is understood that V and p means V and p for 

turbulent flow and V and p respectively for flow through a porous 

medium. 

• 

• 
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X-1 

X-1. 1 

CHAPTER X 

BERNOULLI EQUATION 

FORCE AND INERTIA- WORK AND ENERGY 

INTEGRATION OF THE MOMENTUM EQUATION IN SOME 

GENERAL CASES 

The laws which govern the motion of a fluid element have 

been established in the first part of this book. They are given in 

differential forms. 

Integrating the momentum equation along a line or over a mass 

of fluid gives some general relationships between the two unknowns: the 

-+ 
velocity V and the pressure p independent of any specific boundary 

conditions. The purpose of this chapter is to establish these general 

relationships by integration of the momentum equation. 

Before performing these integrations, some elements of 

mechanics are reviewed in order to ascertain the obtained relation-

ship. 

X-1. 2 MOMENTUM AND ENERGY IN ELEMENTARY MECHANICS 

Consider Newton 1 s second law: force equals mass times -- dV acceleration: F = m d t 

-V = dS 
dt 

-Multiplying each term by the length dS -yields: -- dV ~ --F.dS = mdt. d:; = mV.dV = 
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F dS is the work done by the force F acting along dS , while md ( i 2
) 

' ...... 
is the variation in kinetic energy of the mass m caused by the force F 

~ 

along the path d S . 

Integrating with respect to dS gives: 

= 

which is an expression equating work and kinetic energy derived directly 

from an expression equating applied force and inertia. 

X-l. 3 MOMENTUM AND ENERGY IN HYDRAULICS 

Now, consider the momentum equations established in the 

first part: Euler's equations, Navier-Stokes equations, Reynolds' 

equations and Darcy's Law. They are all expressions equating forces. -If they are multiplied by a distance d S and integrated along a distance --s , expressions equating work and energy are obtained. 

When the inertia forces are zero or neglibible, as it is in the 

case of a flow through porous medium, an equality between the work of 

the applied forces is obtained. 

Since these equations are based on an elementary fluid par-

ticle of volume equal to unity ( m = p) , the formulas obtained from them 

will give, as a first step, the relationships between the kinetic energy 

of an elementary fluid particle and the work of the applied forces acting 

on the particle. 
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X-l. 4 PROCESSES OF INTEGRATION AND SIMPLIFYING 

ASSUMPTIONS 

In this chapter only the exact integrations in the mathematical 

sense are performed, but these exact integrations require limitations 

and simplifying assumptions. First of all, it is assumed that the fluid 

is perfect. Moreover, the exact integrations without limitation of direc

tion may also be performed for a rotational flow. 

These integrations are successively given from the most 

simple case to the most complex one. The number of simplifying 

assumptions will be noted although these assumptions are not always 

satisfied in practice. Approximate integrations are then necessary for 

practical purposes in order to study, for example, the flow of fluid in a 

pipe, etc. This subject is dealt with in Chapter XII. 

X-2 IRROTATIONAL MOTION IN A PERFECT FLUID 

This paragraph deals with cases where an exact integration 

is pas sible in any direction; in practice these cases are limited to 

irrotational motion of an ideal fluid. The following illustrative cases 

may be studied in the order given from the most simple to the most 

complex. 

X-2. l SLOW-STEADY AND UNIFORM-STEADY MOTIONS 

X-2. l. l _Slow-Steady Motion 

Since the motion is steady, the local inertia terms are zero; 

since the motion is slow, the convective inertia terms may be neglected; 
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and since the fluid is perfect, the friction forces are zero. Hence, the 

momentum equation is reduced to an equality of applied forces: pressure 

and gravity, mathematically expressed as: 

8p = 0 
ex 

8p = 0 
8y 

8(p+pgz) = 0 
ez 

The axes OX and OY being horizontal, the first two 

equations show that the pressure is a constant on a horizontal plane, 

while the third equation gives: 

p + pgz = = constant 

It is seen that p varies linearly with the distance from the 

free surface. The law of hydrostatics is recognized; that is, hydrostatics 

could be considered as a steady limit case of slow motion of an ideal fluid. 

However, since friction forces are also zero when there is no motion, 

the law of hydrostatics is exact, while this same law is only approximate 

for slow motion. 

X-2. l. 2 Uniform Steady Flow of a Real Fluid 

It is important to note that a similar law is obtained for a 

uniform steady flow of a real fluid, i.e. with friction forces. Consider 

a uniform flow in the OX direction with an angle a with the horizontal, 
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FIGURE X- 1 

IN A UNIFORM FLOW, PRESSURE DISTRIBUTION IS 

HYDROSTATIC AT AN ANGLE 

as shown by Fig. X-1 . Since the motion is uniform, au - = 0. Hence, ax 
the terms of convective inertia are always zero in a uniform flow; and 

taking into account the fact that the OZ axis is inclined at an angle a 

a ( p + p gz cos a) 
z = 0 Integrating, with the system of axes pre-

sented in Fig. X-1 where Z is always negative, one obtains 

p = p + p gz cos a a 
where p is the atmospheric pressure. 

a 
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The isobars or lines of equal pressure are inclined at an angle a 

with respect to a horizontal plane. It may be deduced from this that the 

buoyancy exerted on any body in such a flow, such as on a rock deposit 

on the bottom, is exerted at an angle a with the vertical. 

For a number of practical cases of flow with a fr.ee surface, 

a is very small and cos a may be considered equal to unity. Hence, 

the pressure distribution in a free surface uniform flow is most often 

hydrostatic. 

This hydrostatics law is considered as accurate enough even 

for a non-uniform and non- slow motion when the curvature of the paths 

is small. The calculation of a backwater curve is usually based on such 

an assumption, even though it is often not specified as such. Fig. X-2 

illustrates such a consideration. 

FIGURE X- 2 

VELOCITY AND PATH CURVATURE ARE SMALL 

HYDROSTATIC PRESSURE DISTRIBUTION 
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Figs. X-3, X-4 and X-5 illustrate some cases where the 

convective inertia has a non-negligible influe:o.ce on the pressure dis-

tribution and conversely, the pressure distribution has an influence on 

the flow pattern. Effect of flow curvature is also studied in Section XVII-2. 3. 1. 

X-2. 2 

X-2. 2. 1 

SLOW-UNSTEADY AND UNIFORM-UNSTEADY MOTIONS OF 

A PERFECT FLUID 

General Case 

Introducing the local inertia terms in the previous equations 

(X-2. l. 1) gives the following equations, valid for the slow unsteady 

motion· of a perfect fluid. They are also valid for non- slow, unsteady, 

uniform flow of a perfect fluid since in that case· the ~onvective inertia 

terms are also zero, as it will be seen in Chapter XII-2. l. 2 . 

au = 
ap):-: 

p at - ax 

av = ap'~ 
p BT ay 

()w = - 8p* 
p aT az 

..... 
av -p BT + grad p~~ = 0 

Now considering that a slow motion may mathematically be 

irrotational (see Chapter IV-5. 2. 3), -V ( u, v, w) may be defined by a 
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FIGURE X - 3 

HYDROSTATIC PRESSURE 

REAL PRESSURE 
DISTRIBUTION 

BUCKET 

PRESSURE DISTRIBUTION IS GREATER 

THAN THAT GIVEN BY HYDROSTATIC 

LAW 

FIGURE X- 4 

REAL PRESSURE 
DISTRIBUTION 

-HYDROSTATIC 
PRESSURE 

PRESSURE DISTRIBUTION IS 

SMALLER THAN THAT GIVEN 

BY HYDROSTATIC LAW 

~~ ... ---

FIGURE X- 5 

PATH CURVATURES OVER A BROAD-CRESTED WEIR 
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velocity potential function cp such that: 

1.,, 

u = ..£..!P 
ax 

-+ - ..£..!P v = grad cp v = ay 

.·-"·' 
..£..!P w = az 

The following transformations can be made successively: 

au a ~ a ~ 
Tt = 8t = ax ax a t 

and similarly: 

av a acp 
81 = ay a t 

aw = a acp 
at az at 

or 
..... 

av ...£.. - - .£..2 = grad cp = grad 8T at at 

Introducing these values in the momentum equations gives: 

a 
ax (~ P at + P'') = 0 

\ 
a (~ + P'~) ay P a t = 0 

a (p ~ t t P') az = 0 

• 
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or 

Now integrating with respect to distance gives in any direction: 

if p at + p + p gz = f (t) 

The derivative of f (t) with respect to space is zero. 

X-2. 2. 2 The Cauchy Poisson Condition at the Free Surface 

At the free surface, defined by z = '1 , the pressure p is 

constant. Hence, including f (t) in ~ t , the Bernoulli equation be-

comes: 

iii at z='l'] 
+ g'l = constant 

The motion is assumed to be infinitely small, hence ~ tJ z = 
11 

= iii a t • 
z=O 

Differentiating with respect to t, and since ~ ~ = w = ~ t , where the 

nonlinear terms are neglected (see XVI-1. 4) one obtains: 

+ g li az = 0 

This is the Cauchy Poisson condition at the free surface which 

is fully developed in Section XVII-l. 5. 

X-2. 3 STEADY IRROTATIONAL MOTION OF A PERFECT FLUID 

The momentum equations in the OX, OY, OZ directions 

of steady irrotational motion of a perfect fluid are: (see VI-l. 2. 3) 
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P ( 8
8
x 

vz ) 8 p~~ 8 (r vz 
+ P'~) 0 -z- = -ax 2 = 8x 

p ( 88y 
vz ) 8p* 8 (r vz 

P'') -z- = or 
8y z + = 0 ay 

p ( .}.z. vz) (r vz 
+ p•:•) 

8 p):~ a 
0 2 = - ---az az 2 = 

which are written vectorially: 

- vz 
~d ... ~ ( vz + P*) p grad ·y ·-· - gra · p•· or gr:d p T = 0 

Integrating these equations with respect to distance yields 

in any direction: 

p gz = constant 

or dividing by p g: 

+ .E + ·w z = H 

where H is a constant, the so-called total head: sum of the velocity 

. head 

J2.. + 
lil 

vz 
Zg 

z 

, the pressure head ~ , and the elevation head z . 
w 

is the value given by a piezometer and is called the piezo-

metric head. {See Fig. X-6.) 

Finally, this very important result is obtained: the variation 

with respect to space of the total head H in an irrotational motion is -grad (H) = 0 zero: 
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PIEZOMETRIC HEAD-,-----.---. 

TOTAL HEAD 

z 

DATUM 

FIGURE X- 6 

2 v 
2 g 
VELOCITY 
HEAD 

-

IN AN IRROTATIONAL FLOW, THE TOTAL HEAD IS 

A CONSTANT AT ANY POINT 
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X-2. 3. 1 The physical meaning of such an equation is well known: it 

expresses the conservation of energy of an elementary particle of fluid 

as a sum of its kinetic energy, pressure energy and potential energy. 

It is emphasized that for an irrotational motion, the Bernoulli equation 

is valid in any direction: along a path as well as along a normal to a -path. It is noticed, also, that the velocity V and pres sure p refer to 

the local value of the velocity and do not refer to the mean velocity and 

mean pressure in a cross section, as will be demonstrated in the 

generalization of the Bernoulli equation for studying the flow in a pipe. 

(Chapter XIL) 

A number of applications based on this formula are made in 

engineering practice. For example, the calculation of pressure along 

a boundary may be known by application of this equation when the velocity 

field is given, for example, by the flow·net method. (See Chapter XI-6.) 

It must be realized that this method may only be applied for an irrota-

tiona! flow as it is encountered in practice in short, convergent 

structures. (See Chapter II-4. 4J 

-X-2. 3. 2 Expressing V as a function of <j> the Bernoulli equation 

becomes: 

• 
X-2. 4 UNSTEADY IRROTATIONAL FLOW OF A PERFECT FLUID 

Since the motion is unsteady the local inertia terms have to 

• be introduced in the equations of the preceding case: 
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8u + 8 (p 
v2 

+ + p gz) 0 p 
8 t 8x 2 p = 

I 

(p v2 
p gz) 

.. I 
8v + 8 + p + 0 I 

p 
at 8y 2 = 

' 

I 
( v2 p gz) 

,. 
8w + 8 + p + 0 p 
IT 8z P T = 

Introducing the value of v as a function of cp according to the same 

process as that given in paragraph X-2.2.1 leads to the following 

·equalities: 

8 (p 8cp + 
v2 

+ + p gz) 0 ax at 
p 

2 p = 

a (p acp + 
v2 

+ + p gz) 0 8y at 
p 

T p = 

a (p acp + 
v2 

+ + p gz) 0 az at 
p 

2 p = 

or 

- ( 8 cp 
v2 ) grad p 8 t + P-y + p + p gz = 0 

Integrating them with respect to distance gives in any direction: 

acp v 2 

P a t + P T + P + P gz = f ( t) 

or expressing v 2 
as a function of cp • 
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X-3 

8cp 
p 8 t + p + p gz = f( t) 

ROTATIONAL MOTION OF A PERFECT FLUID 

Despite the fact that rotation is physically caused by friction, 

some rotational motions without friction force are considered in thea-

retical hydraulics. This case is treated now. This will form a sound 

basis for studying real rotational flow after generalization involving 

simplifying assumptions. (See Chapter XII~ 

It will be seen that in the case of a rotational motion, an 

exact integration in any direction is impossible. However, an exact 

integration is possible along a path. 

X-3. 1 STEADY-ROTATIONAL MOTION OF A PERFECT FLUID 

X-3. 1. 1 Consider first the momentum equations under the Eulerian 

form where d~ means total derivative: 

du 
p d t 

dv 
p d t 

dw 
p d t 

= 

= 

= 

8 P'~ -ax 

8 P'~ 
- 8Y 

It is assumed that u, v and w vary with respect to space 

only. 
8u 8v 8w 

The motion being steady, the partial derivatives 8 t , 8 t ' at 

are zero. 
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These three equalities will be multiplied by dx, dy and dz 

respectively. dx, dy and dz are by definition the components of an -element of streamline dS (and not any length dx, dy, dz as in X-2) 

such that: 

Then adding them gives: 

( 
du dv dw 

p d t dx + d t dy + d t 

Introducing the relationships 

left side leads sucrcessively to: 

( u du + v dv + w dw) 

dx = u dt 

dy = v dt 

dz = w dt 

dx 
u = d t 

v = dy 
d t 

= d ( _u_2_+.c....cv.,.:.c....c+_w::_2 

a ... .\ 
dy + :~· dz/ 

dz 
w = d t in the 

~~ 
On the other hand, the right hand side is the total differential of p . 

Hence, the momentum equation becomes finally: 

d = 

or 

d r(.f. + P'~) = 0 
that is: 

v2 
p 2 + p + p gz = Constant 
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which is the same equation that was obtained for an irrotational motion. 

This formula has been obtained without assuming the motion irrotational, 

but its integration is limited along a streamline because of the insertion of the 

values dx, dy, and dz as udt, vdt and wdt respectively. 

X-3. 1. 2 Because of its importance, the case of steady-rotational 

motion of a perfect fluid is also studied by considering the momentum 

equation under different forms. 

Another demonstration is given here by considering the con-

vective inertia terms under their developed forms. (Only these terms 

are taken into account in the following, since the demonstrations for p~:c 

are always the same.) The three expressions of convective inertia along 

the three axes of reference are multiplied by dx, dy, dz respectively: 

(u 
au + v 

au + w 
au ) dx p ax ay Bz 

(u 
av + v 

av + w 
av ) dy p ax ay Bz 

p (u 
aw + v 

aw + w 
aw 

) dz ax a Y a z 

Since dx, dy, dz -are the components of streamline dS, the streamline 

equations 
dx dy dz = = u v w 

= dt (see Chapter 1-2. 4) give the 

following equalities: 

vdx = udy, wdx = udz, wdy = vdz 

Introducing these equalities and adding the three above expressions leads 

successively to: 
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au 
u ay dy au ) + u a z dz + av 

v By dy av ) + va:zdz + 

( 
aw 

p waxdx+ 
aw 

w--dy a Y 
ow ) + w a z dz = 

P(t-) p ( u du + v dv + w dw) = d c. 

The result of this demonstration is the very same as that given in 

Section X-3. l. l. 

X-3.1.3 A similar process of integration may be done from the 

following form where the rotational terms !:, , 71 , i; appear: 

v2 
The term p T 

a ( v
2

) P ay T dy • 

p [ o
0
x ( _:¢) + 2(71w- !:. v) J dx 

P [ aay (~) + 2 ( !:,u - i; w) J dy 

P [ aaz ( i2 ) + 2 ( i; v - 71U)] dz 

a (v
2

) is directly obtained from the components p ox 1\Z dx, 

a (v2
) P az T dz' while the terms where !:,, 71' i; 

appear are canceled out by the introduction of the relationships 

v dx = u d y , w dx = u dz , w dy = v dz valid along a streamline. It must 

be noted that these rotational terms disappear along a streamline despite 

the fact that !:, , 71 , i; are different from zero as was the case in X-2. 3 
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v2 
p 2 + p + p gz X-3. l. 4 Since = Constant along a streamline 

dS ( dx, dy, dz}, the total variation of the total head 

along this path is zero: 

or 

( 
v2 
2g 

8H 
8 s 

= 0 

= 0 

In a steady flow, if 
8H 
as is positive, it is because of the action along 

the path dS of an external force such as a pump. It 
8H 
as is negative, 

it is either because of the action along the path dS of an external force, 

such as a turbine, or because of friction force. 

The variation in H along S measures, dimensionally in 

terms of length, the action of turbo machines or the head losses. 

X-3.1.5 It is important to notice that in a rotational flow H varies 

from one streamline to another streamline, while H is the same for 

any streamline of an irrotational flow. Fig. X-7 illustrates such a result. 

X-3. 2 

X-3.2 .. 1 

PRESSURE DISTRIBUTION IN A DIRECTION PERPENDICULAR 

TO THE STREAMLINES 

In an irrotational flow, the variation of p is known in any 

direction by applying the Bernoulli equation to the velocity field. 

In a rotational flow, the Bernoulli equation gives the variation 

-+ 
of p along a streamline as a function of the variation of V , but does 
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IN A ROTATIONAL FLOW, THE TOTAL HEAD CHANGES 

FROM ONE STREAMLINE TO ANOTHER 
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not give any indication of the variation of p in a direction perpendicular 

to the strea1nlines. However, both of these are of equal importance in 

engineering practice. 

It has been seen that the pressure distribution in a uniform 

flow is hydrostatic. (See Chapter X-2. 1. 2~ This hydrostatic law is 

again valid when the path curvature is small. 

X-3.2.2 Now the general case of non-negligible curvature is studied. 

Consider an infinitely small, curved, two-dimensional stream tube as 

shown by Fig. X-8, and an elementary mass of fluid p dR dS in this 

stream tube. 

Since the motion is in the direction of the stream tube, this 

elementary mass i.s in equilibrium in a direction normal to the stream-

bP STREAMLINES 
p + SR dR 

FIGURE X- 8 

NOTATION 
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line, under the action of its inertia and applied forces. 

p dR dS 

Its inertia gives rise to a centrifugal force equal to 
y2 
R where R is the radius of curvature of the streamlines. 

The applied forces are the difference of pressure forces acting on the 

two streamlines: 

and the gravity: 

Introducing 

( 
a P 

p + aR dS - p dS = ap dRdS 
aR 

p g dR dS 

cos Q ;::::; 

a z dR 
aR 

dR 

cos a 

= a z 
aR 

and equating and dividing by the volume dR dS leads to: 

or 

or also: 

or again 

a 
aR 

= a(ptpgz) 
BR 

= 

= 

P"' ) ln R -
w 
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Integrating this equation along dR permits the calculation 

of the pressure distribution from the velocity fields along a curved 

boundary, as on a bucket of a spillway, for example. 

If R tends to infinity, 

p~:~ 

a= w 
~ tends to zero and P'~ = constant 

as has been found in the case of uniform flow. (See Chapter X-2. l. 2.) 

X-3.2.3 The above demonstration does not require the assumption 

that the flow is irrotational. Hence, it is valid for an irrotational flow 

as well as for a rotational flow. It has been seen that the pressure dis-

tribution in an irrotational flow is also known by the Bernoulli equation 

which is valid for any direction, and in particular in a direction perpen-

dicular to the streamlines. So two methods exist for calculating the 

variation of the pressure distribution in a direction perpendicular to the 

streamlines for an irrotational flow. It is evident that the same result 

must be obtained. This could be demonstrated by combining the above 

formula with a condition of irrotationality. 

The simplest demonstration is that the variation of total 

head H 
v2 

=- + Zg along the radius of curvature R is zero; i. e. 

8H 
OR = 0 . 

Introducing the relationship demonstrated in the previous 

section, one has successively: 

8H 
8R = v 

g 
av 
8R + = 
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In an irrotational flow VR = constant; VdR + RdV = 0 . Hence, 

= 0 , that is ~ ~ = 0 which means that the constant H 

is the same for any streamlines of an irrotational flow, as previously 

shown. (See Chapter X-2.3.) 

X-3. 3 UNSTEADY-ROTATIONAL MOTION OF A PERFECT FLUID 

Introducing the local inertia terms, multiplying the three 

momentum equations by dx, dy, dz respectively, adding them and 

integrating them along a streamline following the same process as given 

for a steady motion (see X-3. 1. 1) leads to: 

v2 
P 2 + p + pgz + p S ( ~t dx + a v d aw d ) 

01: n y+TI z = constant 

or 

v2 
+ p + p gz + s av dS constant p 2 p 1lt = 

that is: 

av 
+ 

a 
( p 

v2 
+ p + p gz) 0 p at as "'2 = 

and dividing by p g: 

1 av 
+ 

aH 
0 - at a s = g 

This last expression is smaller than zero when friction forces are taken 

into account. 
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X-4 RESUME AND NOTEWORTHY FORMULAS 

This chapter dealt with a perfect fluid. According to this 

assumption the following formulas have been found: 

Hydrostatics 

Steady slow motion 

Steady uniform flow (real fluid). 
OZ at an angle <> with the 
vertical. 

Unsteady slow motion 

Free surface condition for 
unsteady slow motion 

} p':' = p + p gz 

p + p gz cos <> 

a 4> + P'~ = Pat 

a2 cj> 
+ aq, 

87 g a z 

= Cst 

= Cst 

f ( t) 

= 0 

Steady irrotational flow H 
vz 

+ £ + = Zg 
z = w 

c;: st 

Unsteady irrotational motion 1 a 4> + vz + £ + z = f ( t) 
g at Tg w 

Steady rotational flow 

Steady flow (rotational or 
irrotational 

Unsteady rotational flow 
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vz 
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as 

(v2 + p 
+ z) 0 Tg w = 

a 
( ~ + z) = aR 

( Vz + £ + z) +_!_ av 
a t = 2 g w g 
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All these formulas have been obtained by exact integration. 

Unfortunately, only the formulas obtained in the case where the motion 

is assumed to be irrotational may be applied in engineering practice. 

The integration in the case of a rotational motion is valid only along an 

infinitely small stream tube which is a streamline. To be able to use 

.,.I 

I 

I 
( 

these formulas in practice, they must be integrated to a cross section. 

This is the subject of Chapter XII, which is entitled, "Generalization of 

the Bernoulli Equation". 

• 
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X-1 The velocity around the limit of a circular cylinder is given 

by the equation: 

V = 2 U sin 9 

where U is the velocity at distance infinity, and where the pressure 

is p . Determine the pressure distribution around the dylinder. 
co 

Answer: 

X-2 Demonstrate the following equality valid for steady flow: 

and two other similar relationships obtained by circular permutations. 

Answer: 

2(u(-wi;.) a [v2 + E. g z] = - 8y T p 

a [v2 2 ( v i; - u 'Ill = 8z T + * gz] 

X-3 The velocity potential function for a flow past a sphere of 
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radius R is 

Determine the velocity and pressure distribution around the sphere. 

v 
r 

= a <I> 
a r ' 

= 1 a q, 
r a 9 

In view of the results, explain the shape that a drop of rain will take, 

and explain why, by considering the capillary action, there is a maxi-

mum critical size which can never be exceeded. 

Answer: 

X-4 

v 
r ;:::; 0 ' l. 5 U sin 9 

A wave filter is composed of wire mesh dropped into the 

fluid flow. Such a filter creates negligible flow disturbances. However, 

it introduces an internal friction force F proportional to the average 

velocity such that F = - K V. The flow motion will be considered as 

irrotational. Establish the free surface condition which should be used 

instead of the Cauchy-Poisson condition for the free surface in the case 

where the void coefficient of the filter is unity (i.e., practically immaterial) 

and in the case where it has a finite value e. 
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Answer: 

V = grad <j> 

1 dV ~ e d t + grad [% + g z] + K V = 0 

Linearizing: 

grad [~ a<j> +E. +gz + K<j>] = 0 • at p 

At the free surface where z = T), 
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XI-1 

CHAPTER XI 

FLOW PATTERN 

STREAM FUNCTION- POTENTIAL FUNCTION 

GENERAL CONSIDERATIONS ON THE DETERMINATION 

OF FLOW PATTERN 

The laws which govern the motion of an infinitely small 

particle of fluid have been established in Part One (Chapters II to IX). 

Then some general relationships between velocity and pressure 

and gravity, such as that given by the Bernoulli equation, have been 

deduced by general exact integration, independent of the boundary con-

ditions (Chapter X). It has been seen that this integrating process has 

transformed an equality between momentum-force into an equality betw.een 

energy-work. The pressure p (or velocity V) may be determined from 

these general relationships after insertion of the value V (or p) . 

Also, the differential equations derived from the continuity 

principle and momentum equation allow us to theoretically solve directly -any particular problem, that is, to determine the velocity V (or pres-

sure p) when the boundary conditions are introduced. These boundary 

conditions define the particular case to be considered. An exan1ple of 

this is given in Chapter VI-2, Laminar Flow on an Inclined Plane. 

However, the boundary conditions are usually too complicated 

in the majority of cases encountered in engineering practice and, as 
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previously pointed out, it is also evident that a general solution of the 

continuity relationship and Na vier -Stokes equation does not exist. 

Hence, the use of the mathematical theory is limited to over-

simplified cases. However, a number of practical problems closely 

approximate some simple cases which can be submitted to math~matical 

analysis. This could be performed after a choice of schematic boundary 

conditions, which may be mathematically expressed in simple form. 

The purpose of this chapter is to study some of these exact 

mathematical methods. Moreover, a number of approximate methods -

graphical, numerical or experimental - are based on the same mathe-

matical principles as those which are explained in this chapter. The 

approximate methods extend the field of application of the exact methods 

considerably and take into account cases in which the boundary conditions 

are not so simple. The well-known graphical flow net method is one of 

these approximate methods. 

It is intended that the word ·"exact" refer to the mathematical 

process. The physical exactness will. depend upon the limit of validity 

of the basic assumptions necessary to use such methods. 

It has already been indicated that the two unknowns to be -determined are the velocity V and the pressure p and that theoretically, 

both of them may be found directly from the momentum equation and 

continuity relationship. However, in many cases the methods under 

• 
study provide a knowledge of the relative velocity distribution from the 

velocity field calculated from the continuity principle and an assumption 

.. 
such as that of irrotationality. 
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To calculate the absolute value of the velocity requires a 

second step. This second step is simple when the absolute value of the 

velocity at one point or at one boundary is known. 

Then, in a third step, the pressure distribution is determined 

.... 
by application of some of the relationships between V and p which have 

been established in Chapter X, such as the Bernoulli equation. 

This chapter deals with the problem of the determination of 

the velocity field by some analytical methods of particular importance. 

These analytical methods are based on the use of two mathematical tools 

which allow a concise description of the complete flow pattern. They 

are: the stream function and the velocity potential function. 

XI-2 STREAM FUNCTION 

XI-2. 1 DEFINITION 

The stream function is a mathematical device to concisely 

de scribe a flow pattern by its streamlines. 

The stream function may be used to calculate any kind of 

flow of incompressible fluid: rotational or irrotational, steady or 

unsteady, two-dimensional or three dimensional; laminar or turbulent, 

slow or non- slow motion. However, in the case of turbulent motion, the 

streamlines are intended to define only the mean motion with respect to 
=;. 

time, i.e. the mean velocity vector V . It may also be used to define 

the mean motion with respect to space of a flow through porous medium 

whatever the value of the Reynolds 1 number, i.e. for turbulent flow as 

well as for laminar flow. 
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Although the stream function may theoretically be defined and 

used for three-dimensional motion, its calculation is complex and its 

use has been limited. Hence, in practice the stream function is mainly 

used in two-dimensional flow and only this case is analyzed in this book. 

The stream function may be defined by any one of its char-

acteristics and then the other characteristics may be deduced from this 

chosen definition. As was done for the velocity potential function, the 

stream function will be defined first by the velocity components. 

XI-2.2 STREAM FUNCTION AND CONTINUITY 

The stream function is a natural outcome from the continuity 

relationship: au + ov 
0 Indeed, consider a function 1Jr (x, y, t) ay = = ox 

constant such that u = o1Jr v = 81Jr 
ay - ax 

in any case 

From the continuity relationship given above, it follows that 

a 
ax = 0 which shows that 1Jr always satis-

fies the principle of continuity; in other words, the existence of 1Jr im-

plies that the continuity relationship is satisifed and conversely the con

tinuity equation implies the existence of a stream function. 

XI-2. 3 STREAM FUNCTION, STREAMLINES AND DISCHARGE 

Now it is shown that such a function 1Jr = est is not only 

the equation of one streamline but of any streamline of the considered 

flow. This is performed by a simple change of the constant value for 1Jr 

For this purpose, consider the streamline equation dx = dy 
u v 

(see I-2. 3) which may be written udy- vdx = 0 Introducing the 
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value of u and v as functions of 1jr yields the equation of streamlines 

in terms of stream function: 

= 0 

It is the total differential d'ljr (with respect to distance) of 

1jr{x, y, t). Hence, the equation of any streamline expressed as a function 

of 1jr is given by the equation d'ljr = 0 , or in the case of steady flow 

1jr(x, y) = constant, and in the case of unsteady flow 1jr(x, y, t
0

) = constant. 

Changing the value of the constant gives different streamlines 

of the considered flow, but the function 1jr(x, y) keeps the same analytical 

form. It is for this reason that 1jr is called a stream function. 

Consider the flow pattern as shown by Fig. Xl-1. The dis-

charge dQ passing through an element dn perpendicular to the stream-

lines is: 

dQ = 81jr dy + 81jr dx 
8y 8x = d'ljr 

which is also the total differential of 81jr with respect to distance. 

It is deduced that V = ~~ = ~! . 
The total discharge between two streamlines 1jr 

1 
{x, y) = K

1 

and Wz (x, y) = K
2 

is given by an integration between A and B of 

dQ; i.e. 

s dQ = 
AB 

s d'ljr 
AB 

= 
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The total discharge between two streamlines 1jr 
1 

and 1jr2 is 

given by their difference. 

The average value of V between A and B is: 

v = = 

XI-2. 4 AN EXAMPLE OF STREAM FUNCTION - UNIFORM FLOW 

In this section, it is verified that the stream function of a 

uniform flow may take the form: (Fig. XI-2} 

1jr = Ay - Bx 

The velocity components are: 

u = = A v = = B 

and v = 

" 

2 2 
A + B . V does not depend upon x and y , hence the 

flow is uniform. 

The streamlines are defined by the equation: 

Ay - Bx = K 

They are straight lines of slope: :t. = 
X 

B 
A and are obtained by giving 

K various constant values. The discharge between two streamlines is 

given by the difference between the corresponding values of the constant K. 

XI-2. 5 STREAM FUNCTION AND ROTATION 

The rate of rotation is: (see Chapter II} 

Expressed as a function of 1jr , the rate of rotation becomes successively: 

283 



y 

A 

)( 
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DISCHARGE IN TERMS OF STREAM 

FUNCTION - NOTATION 

FIGURE XI-2 

UNIFORM FLOW DEFINED BY A 

STREAM FUNCTION 
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21;, 
a a1)r a (- ~~ ) a21)r 

+ 
a21)r 

= ay ay ax = 
87 ax

2 

that is: 

21;, = 
2 

'Q1jr 

Hence, an irrotational motion for which !;, = 0 is defined by a stream 

function 1)r which is a solution of the Laplace equation 
2 

'Q1jr=O.In 

other words, 
2 

'<J 1)r = 0 defines an irrotational motion which satisfies 

the continuity principle. It may be easily verified that the example of 

uniform flow defined by a stream function given in XI-2. 4 is irrotational. 

XI-2. 6 GENERAL REMARKS ON THE USE OF THE STREAM . 

FUNCTION 

The stream function may be used to calculate the flow pattern 

from the basic equations -- continuity relationship and momentum 

equation -- by introducing the value of u and v as a function of 1)r 

In this case, it must be noted that the problem exists in finding only one 

unknown: 1)r instead of two: u and v , but it should be expected that 

because of its own definition, the order of the basic differential equation 

increases by one degree. 

For example, consider the equations which are used to study 

the boundary layer theory as they have been established in Chapters 

IV-5.2.4 and V-4.3. 

Continuity: 
au + av 

0 ax ay = 

au + au a
2

u 
u- va = v -2 ax y ay 

Momentum: 
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The fir s.t equation allows definition of 1J! as: 

u = and v = 81J! 
- ax 

Then introducing these values in the momentum equation yields: 

= 

which involves the calculation of only one unknown 1J! but the equation 

is now of the third order instead of a second order as it was when the 

motion was expressed by the two velocity components of u and v . In 

a word, the stream function permits the transformation of a system of 

two equations with two unknowns u and v into one equation of higher 

order with only one unknown. 

Introducing the boundary conditions, this equation gives the 

theoretical value of 1J! after successive integrations from which u and 

v are afterwards obtained by simple differentiation. 

XI-3 VELOCITY POTENTIAL FUNCTION 

XI-3. l ITS USE 

The velocity potential function has been defined in Chapter 

II-5. 3 . Similar to the stream function, the velocity potential function 

is a mathematical device to concisely describe a flow pattern. 

The velocity potential function may be used for any kind of 

irrotational flow: steady or unsteady, two-dimensional or three dimen-

sional. It may be used to study turbulent motion, provided the velocity 
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potential function refers to the mean motion with respect to time, and 

the turbulence is almost isotropic. In practice, outside the boundary 

layer turbulent flow has a mean motion which could often be considered 

as irrotational (see VIII-2. 2} . 

It may also be used to study a flow through porous medium 

provided it refers to the mean motion with respect to space, and that the 

Reynolds number is smaller than l (see IX-2. 6) . 

Except in this last case, it may be used only when friction 

effects are negligible, and in short convergent structures. When used 

for the divergent part of a flow, it must be realized that convective inertia 

forces often cause separation and wakes and that the velocity potential 

function has a limit of applicability. If the surface of separation of wakes 

is known, the flow out of stagnant zones may also be defined by a potential 

function provided the friction effects are negligible, as they are in the 

convergent part of the flow. 

XI-3. 2 DEFINITION 

It is to be recalled that the velocity potential function is de-

fined as a function of (x, y, z, t} such that when differentiated with respect 

to space in any direction, it yields the velocity in that direction. For 

example, for one direction S 

that -v = (8;) 
~as 

or 

...,. 
the velocity in that direction V is such -_. = V. dS 

Particularly along the reference axes OX, OY and OZ 

cp is defined by the following equalities: 

u = acp 
ax 

= acp 
v ay 
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XI-3. 3 VELOCITY POTENTIAL FUNCTION AND ROTATION 

It has been stated that the velocity potential function exists 

only in the case of irrotational flow. The condition for a two-dimensional 

motion to be irrotational was shown to be: (see II-4. l) 

21;, = au 
ay = 0 

Expressing this as a function of <j> results in: 

= 0 

This relationship is an identity and shows that <j> always satisfies the 

condition for an irrotational flow; in other words, the existence of <j> 

implies that the flow is irrotational. A similar demonstration could be 

made in the case of a three-dime.nsional motion. 

It is interesting to note the following parallel: 

The velocity potential function is a natural mathematical outcome from 

the assumption that the motion is irrotational = 0 just as 

the stream function is a natural mathematical outcome from the continuity 

relationship 

XI-3. 4 

au 
ax 

+ av 
8y 

= 0 . 

EQUIPOTENTIAL LINES AND EQUIPOTENTIAL SURFACE 

By definition an equipotential line in a two-dimensional 

motion and an equipotential surface in a three-dimensional motion are 

defined by the fact that <j> keeps a constant value at any point of this 

line or of this surface: 
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That is: 

<j>(x, y, z) = constant - K 

or 

<P (x, y, z, t 0 ) = constant 

aq, aq, 
ax dx + By dy + aq, dz = 0 

8z 

= K 

or d<j> = 0 

Changing the value of the constant K gives various equipotential lines 

or surfaces in the same way that various streamlines were obtained 

when this operation was performed with the stream function (1Jr = K) 

On the other hand, the velocity vector and the streamlines 

are always perpendicular to the equipotential lines or equipotential sur-

faces. Consider the equation of an equipotential line given above in the 

case of a two-dimensional flow: 

aq, aq, 
8x dx + By dy = 0 

or u dx + v dy = 0 

It is deduced that the slope of an equipotential line is dy = - ~ which 
dx v 

is normal to the slope of a streamline. (See XI-2. 3.) More generally, 

aq, aq, 
8x ' By ' 

are the this may also be deduced from the fact that 

direction cosines of the perpendicular to the surface defined by <P = K 

XI-3. 5 VELOCITY POTENTIAL FUNCTION AND CONTINUITY 

It is to be recalled that introducing <P in the continuity 

relationship (see Chapter III-3. 4) ~~ + ~; + 8w 
= 0 leads to 
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= 0 or = 0 Similarly, introducing 

1Jr in the equation stating that the flow is irrotational leads to \1 
2

11r = 0 

as has been demonstrated in XI-2. 6 . 

Hence, a two-dimensional irrotational flow may be found as 

a solution of both: 

or 

The following table summarizes the previous considerations: 

Continuity Irrotationality 

Definition of 1Jr Definition of <j> 

E d ..... 2_._ -- o xpresse as v "' Expressed as 

In a word, both '1
2

<1> = 0 and '1
2

1Jr = 0 define an irrotational motion 

which satisfies the continuity principle. 

XI-3. 6 AN EXAMPLE OF VELOCITY POTENTIAL FUNCTION: 

UNIFORM FLOW 

The simplest example of motion where the velocity potential 

may be used is the two-dimensional uniform flow for which the velocity 

potential function is (Fig. XI-3) 

<j> = Ax + By 

The velocity components at any point are: 

u = B<j> = A ax v = B<j> = B 
8y v =V+B2 

" 
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FIGURE XI-3 

IJr=K 
i!t=K 4 

IJr=K 3 
ii'=K 2 

I 
X 

UNIFORM FLOW DEFINED BY A 

VELOCITY POTENTIAL FUNCTION 

That is the very same flow as that given by the stream function: 

'if = Ay - Bx 

The equipotential lines are given by equating cp to constant value K: 

Ax +By = K 

They are straight lines of slope. Y.. 
X 

It may be noticed that these equipotential lines are perpendicular to the 

streamlines. (see XI-3. 4) 

XI-3. 7 GENERAL REMARKS ON THE USE OF THE VELOCITY 

POTENTIAL FUNCTION 

Introduction of cp instead of u, v, w in the basic momen-

tum equation and continuity relationship reduces the number of unknowns 
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from three (or two iti the case of a two-dimensional motion) to one . 

. However, the order of differentiation is increased by one degree. Then 

the system of equations to be solved has the general form: 

Continuity: V'z<!> = o 

Momentum: p ~~ + 1 [(*Y +(~tY +(*r]+p+pgz = f(t) 

This· momentum equation is often introduced as a free surface condition 

for which p = constant . But, in that case, another unknown must be 

introduced: z = TJ(x, y, t) which is the equation of the free surface. 

However, in the case of infinitely small motion, this unknown may be 

eliminated and momentum equation and the free surface equation are 

simply replaced by the so-called Cauchy-Poisson condition 

aq, 
g 8z = 0 0 

This. matter is developed in Chapter XVI. The boundary conditions at a 

fixed boundary are aq, = o 
an · They indicate that the velocity component 

in a direction perpendicular to the boundary is zero. An irrotational flow under 

pressure is determined, at least in relative value, from continuity 

\7 
2q, = 0 and fixed boundary condition ~ = 0 only. 

XI-4 

XI-4. l 

STEADY, IRROTATIONAL, TWO-DIMENSIONAL MOTION, 

CIRCULATION OF VELOCITY 

A REVIEW, AN EXAMPLE, POLAR COORDINATES 

292 

--- ! 
... "1 



XI-4. 1. l A Review of Previous Results 

As previously seen, an irrotational two-dimensional motion 

satisfies all the conditions summarized in the following table, which 

establishes a parallel between stream function and potential function. 

Continuity Irrotationality 

au + av 0 
au av 

0 ax = ay - ax = ay 

permit definition of 

The stream function v The velocity potential function cp 

The streamlines are defined by: The equipotential lines are define( 

d"lj! = 0 by: dcp = 0 

v = K cp = K 

The velocity components are: 

u = av = aq, 
ay ax 

v = av = aq, 
- ax ay 

v = av = aq, 
an as 

dn is the part of an equipotential dS is the part of a stream line 
line defined by defined by 

d cp = 0 d"lj! = 0 
dn is norm.al to the streamlines. dS is normal to the equipotential 

lines. 

Irrotationality is expressed by: Continuity is expressed by: 

'V 2v = 0 'V 2 cp = 0 

• 
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These characteristics involve others which have permitted 

the development of a number of very versatile tools to study a steady, 

irrotational, two-dimensional motion. For this reason, this kind of 

motion has taken on great importance in hydrodynamics and also in 

engineering practice since many three-dimensional motions can be sue-

cessfully analyzed by neglecting the vertical or one horizontal component. 

For example, the flow in a wide river when the backwater curve effect 

is small, or the flow towards a well, may often be considered as two-

dimensional motion. 

The reader will have to refer to Chapter II and to section 

XI-3. l to know when a flow may be considered as irrotational and when 

the following method can be used. 

XI-4. l. 2 An Example: Flow Toward a Plane (or Flow in a Square 

Corner) 

The simple example of uniform flow has already been shown. 

Another example of irrotational two-dimensional flow is that defined by 

the stream function: 'ljr = xy . Giving 'ljr various constant values, it 

can be seen that the streamlines are represented by a family of rectan-

gular hyperbolas which represent a flow towards a plate perpendicular 

to the incident motion (Fig. XI-4). Such a motion is irrotational since: 

0 

Therefore, a velocity potential function exists. This function rna y be 

found considering the following equalities: 

294 

... i 



u = 
aq, 

= o1Jr = X ox ay 

v = 
aq, 

= ~ = -y 
ay 8x 

Hence, 

cj> s xdx 
1 2 + .~( y) = = 2 X 

s 1 2 
f(x) cj> = ydy =-z y + 

It is easy to verify that 

satisfies these two conditions. 

The equipotential lines defined by cj> = constant form a 

family of rectangular hyperbolas which are always perpendicular to the 

streamlines. 

XI-4. l. 3 Polar Coordinates 

Before studying some typical flow patterns, it is useful to 

establish some fundamental formulas in polar coordinates. Referring 

to Fig. XI- 5, it is seen that: 

and 

v 
r 

= u cos e + v sin e 

= - u sin e + v cos e 
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One has also: 

X = r COS e 

y=r sine 

ax 
cos 9, 

1 ax sin e 
ar = - ae = -r 

ay sin 9, 1 ay 
cos e = - = ar r ae 

Now introducing 1Jr in the above equations leads successively to: 

= l [~ (r cos e) + a1Jr ( -r sin e) J v - ay ax r r 

l [ a1Jr ay + a~Jr ax J l a1Jr = - ay ae ax 88 = -
a e r r 

and 

a1Jr sine a1Jr cos e ve = - a Y ax 

a1Jr ay a1Jr ax = a1Jr 
= - a Y ar ax ar - a r 

Introducing cp gives similarly: 

aq, ax + aq, ay aq, 
v = ax ar ay ar = 8""-r r 

and 

l [~ (- r sin e) + aq, 
(r cos e) J ve = r ax ay 

1 [~ ax + aq, ay J 1 aq, 
= ae ay = a e r ax ae r 

Finally: 

1 a1Jr aq, 
v = 8lf = rr r r 

= 
a1Jr 1 aq, 

ve - 8r = - ae r 
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By a similar calculation, the condition for irrotationality 

= au 
ay 

av 
ax = 0 

is found to be for a two-dimensional flow in cylindrical coordinates: 

arv8 1 avr 
2 I = ""'"'li"r r ae = o 

XI-4. 2 ELEMENTARY FLOW PATTERNS AND CIRCULATION 

XI-4. 2. 1 Elementary Flow Patterns 

Many cases encountered in engineering practice are closely 

approximate to some standard flow patterns. A great number of them 

are obtained by a combination or a transformation of three elen'lentary 

flow patterns. These three basic patterns are: (see Figure XI-6) 

a. Uniform flow, studied as an example in XI-2.4 and 

XI-3. 6; 

b. Radial flow: source or sink; 

c. Circular flow or vortex flow which is an irrotational 

flow with a so-called circulation of velocity. If one or more vortices are 

included, the resulting complex flow pattern is still irrotational. How

ever, the circulation of velocity may not be zero if the area defined by 

the path of integration includes one vortex. 

XI-4. 2. 2 Flow Patterns Without Circulation of Velocity 

Some examples of elementary combinations of flow patterns 

without circulation are: (see Figure XI-7) 

a. One source and one sink; 

b. A doublet: a source and a sink at the same point; 

c. Flow past a half body: a source and uniform flow; 
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FLOW PAST A BODY 
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d. Flow past a cylinder: a doublet and a uniform flow; 

e. Flow past a long body: (Rankine body) or a streamlined 

I 

I 
fixed body: a source, a sink, and a uniform flow, or a 

source, a series of sinks, and a uniform flow. 

I XI-4. 2. 3 Flow Patterns with Circulation of Velocity 

Some elementary combinations of flow patterns with circu-

lation of velocity are: (see Figure XI-8) 

a. Spiral vortex: sink and vortex; 

b. Flow past a cylinder with circulation of velocity; 

c. The flow past a cylinder with circulation may be trans-

formed by a conformal mapping operation to the flow 

around a wing: This is the theory of aerofoil. 

XI-4. 2. 4 Source and Sink 

A source is a flow radially outward from a point assumed to 

be infinitely small (Figure XI-6). A sink is a flow radially inward to a 

point. 

In practice, such a flow is fairly well represented by the 

flow through a porous medium towards a well of small diameter' insofar 

as the vertical component is small; i.e. , insofar as the curvature of the 

water table is small. 

But as previously mentioned, its main interest lies in the 

fact that complex flow patterns usually encountered in engineering practice 

may be obtained by a combination of sources, sinks, and other elementary 

kinds of flows. 
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Let Q be the discharge of the source. The components 

of velocity at any point are: v 
8 

= 0 (for reason of symmetry) and 

v 
r = = 1.£1 

r 88 

Stream function and velocity potential function are given by 

direct integration. They equal respectively: 

<I> 
Q 

lnr = 2TT 

"' 
Q 

8 = 2TT 

Equipotential lines, given by <I> = constant, are circles 

(r = constant). Streamlines, given by 1jr = constant, are straight 

radial lines (8 = constant) . Changing Q to - Q gives the velocity 

potential function and stream function of a sink. 

It is easy to verify that the velocity potential function of a 

Q 
three-dimensional source where V = ~ is: 

4TTr" 
Q 

<I> - 4 " r. In this case, the 

equipotential surfaces <!> = constant are spheres (r = constant) . 

XI-4. 2. 5 Vortex 

A vortex is a flow in which the streamlines are concentric 

circles (Figure XI-9). In a "forced vortex" water turns as a monolithic 

mass, the velocity being proportional to the distance from the center 

(See II-4.1). 

The flow under study is a "free vortex". Such a flow is a 

pure mathematical concept, which has no physical equivalent. But 

associated with another simple flow, such as a uniform flow or a sink, 
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FIGURE XI-9 

VORTEX 

it may have a physical significance. 

In a free vortex the velocity distribution is governed by the 

law 

zero, 

K 
V r = constant = 2 rr 

v e tends to infinity. 

It may be seen that when r tends to 

Such a motion is irrotational. 

Since there is no radial flow 

Hence one obtains 

which yields 

cp = 

v 
r 

= v = K 
2 rrr 

= 

= 

1 
r 

1 
r 

1J! = 
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The flow pattern is very much the same as that of a source 

or a sink, but the stream lines and equipotential lines are interchanged. 

Since the flow is irrotational, the Bernoulli equation may be applied 

throughout the fluid: 

+ = constant 

This yields: 

+ = constant 

It is interesting to note that when r tends to zero, tends to - oc,. 

Hence the presence of vortices in a flow is a very important cause of 

cavitation when air is not admitted into the core from a free surface. 

Then capillarity forces take on importance when r- 0 . 

XI-4. 2. 6 Circulation of Velocity - Definition 

Circulation is a mathematical concept on which the theories 

of wings, aerofoils, blades of pumps or turbines, propellers, fans, the 

Magnus effect which causes deviation of a tennis ball, some sand motions 

in a flow, etc. are based. 

Circulation is given by the integral. along a curve S of the 

tangential velocity component V8 along any closed curve S 

r = Ss v8 ds 

It may be demonstrated that r is equal to zero in an irrotational 

flow. 

There is an exception if the closed curve is around a point 
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which is the center of a vortex. Then: 

r = 

and since 

K 
ve = 21Tr: r = K 

Such a flow is called irrotational with circulation. The circulation along 

a closed curve in a rotational flow is generally different from zero and 

it may be demonstrated that when the closed curve is around an elementary 

area dx dy, df = t;, dx dy. Also, it can be demonstrated that the circu

lation f is equal to the flux of the vector rotation of components t;,, ,, I; 

through the considered area limited by the curve S. Only the definition 

of the circulation is given here since it is important to know at least its 

definition. Its use requires further study beyond the scope of this book. 

XI-4. 3 COMBINATION OF FLOW PATTERNS 

As previously seen, a great number of very complicated 

flows are obtained by simple addition of the three basic flow patterns 

studied in the previous paragraphs: 

Uniform flow; 

Radial flow: source or sink; 

Circular flow: vortex. 

Examples are given at first, then the conditions to be satis-

fied for flow patterns, velocity potential functions, or stream functions 

to be added, are analyzed by consideration of the boundary conditions. 

Also, some more general considerations on the methods of calculation 

in hydraulics are given. 
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XI-4.3.1 Two Examples 

XI-4. 3. 1.1 Flow Past a Half Body 

It has been seen that a uniform flow may be defined by 

= 

or if 1 = Ay . A source may be defined by <Pz 
Q = Zrrlnr, 

Q 
zrr 8 · Their addition gives the pattern defined by the 

velocity potential function: 

<P <Pl + <Pz Ax + 
Q 

lnr = = 2TT 

and the stream function: 

if = ifl + ifz = Ay + ~e 2TT 

This flow pattern is presented in Figure XI-10. It may be noticed that 

a central streamline completely separates the source from the outside 

part of the plane. This streamline may be considered as the round nose 

body of a pier, for example. In elevation, the upper half of the flow 

pattern might be regarded as the flow of wind above a hill. 

Streamlines and equipotential lines may be obtained graphi-

cally from the two basic flow patterns. It is sufficient to add a value 

if 1 = K
1 

(or <1>
1 

= K'
1

) to a value if
2 

= K 2 (or <1>
2 

= K'2 ) in 

such a way that K 1 + K 2 (or K'
1 

+ K'2 ) are always equal to a constant 

value K . 

For example, the intersection of if = 4 with if = 5 
l 2 

gives if = 9. The intersection of if
1 

= 3 with if2 = 6 gives also 

if = 9 . The line joining all the inter sections for which if = 9 is the 

streamline marked if = 9 . The drawing is very simple when the same 

interval .6if (or .6<j>) is chosen in the two elementary flow patterns. In 

the case of Figure XI-10, this interval .6if is unity. 
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XI-4. 3.1. 2 Flow Past a Cylinder 

Similarly, it can be demonstrated that one source and one 

sink of same intensity and located at the same point form a doublet 

defined by the stream function 

1)!1 = 
K sine 

r 

The addition of a doublet. with a uniform flow 1)!
2 

=Ursine gives a 

streamline in the shape of a cylinder. Hence the outside flow pattern 

is considered as the flow of a perfect fluid around a cylinder. The 

stream function for flow around a cylinder is 

,,, __ _ K sin 9 U e • --=-==-.:.. + r sin r 

or 
R2 

u (r - -) sine 
r 

1jr = 
where R = fou and U the velocity at infinity. It can be demonstrated 

that R is the radius of the cylinder. The potential function is found to 

be 
R2 

"' = - u (r + -) cos e r 

The velocity distribution around the cylinder is 

V = ve I 
and the pressure distribution is 

r=R 

= l 8cj> = rae 2 u sine 

where p is the pressure at infinity. It can be verified that the net pressure 
co 

force on the cylinder, 
n/4 

F = 4l p cos e R de, 
0 

is nil. This result is general. The total force exerted by uniform 

stream of a perfect fluid on a submerged body, without circulation of 
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velocity, is nil. It is the paradox of d'Alernbert. 

XI-4. 3. 2 General Rule of Addition 

being solutions of 
2 

'V cj> = 0 , any ••• cj> ' 
n 

+ cj> + ... 
2 

+ cj> + ... 
n 

is also a solution of combination cj> = cj> 
1 

9
2 

cj> = 0 and hence is a possible flow pattern. A similar rule exists for 

the stream function "ljr , solution of 'V 
2t = 0 This general rule has 

its limitations. This is the subject of the following section. 

XI-4. 3. 3 Limitation to the Rule of Addition 

Examples will permit a better understanding. Consider the 

flows presented in Figure XI-11. 

In the case of the flow under pressure, an addition of solu-

-+ -tions characterized by velocities . V 
1 

and V 
2 

at a given point does not 

change the flow pattern since it does not depend upon the absolute value 

of the velocity. In the second case of flow with a free surface, the flow 

pattern is changed since the slope of the free surface changes with V . 

The solutions cannot be added since they depend upon the absolute value 

of the velocity. This sterns fro.m the fact that the flow depends upon a 

non-linear equation: the momentum equation; or more specifically the 

Bernoulli equation, in which the elevation of the free surface is related 

to the square of the velocity. The first flow pattern under pressure 

may be drawn directly from the fixed boundary which defines two stream-

lines. This flow pattern depends only on linear relationships: 

The Continuity: 
au 
ax 
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FIGURE XI-1 0 

GRAPHICAL METHOD OF ADDITION OF FLOW PATTERNS 
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FIGURE XI - 11 

THE FLOW PATTERN DEPENDS UPON THE SHAPE OF 

THE FREE SURFACE 
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The Irrotationality: 
au av 

0 'V21jr 0 
ay ax 

= or = 

The Boundary Condition: 
aq, 
an = 0 

r This boundary condition is one involving the continuity only. 

I The flow pattern does not depend upon the absolute value of 

velocity but only upon its relative value. In a word, the solution for the 

flow pattern under pressure within given boundary is unique. The abso-

lute value of the velocity at a point is often given instead of a boundary con-

dition but the determination of the velocity at this point may require the 

application of the non-linear momentum equation. 

Then the pressure distribution may be calculated in a final 

independent step by application of the momentum equation in the form of 

the Bernoulli equation. 

In the second case the flow has a free surface. This free 

surface is unknown and must be calculated taking into account both the 

non-linear momentum equation and the continuity equation. 

The boundary condition at the free surface p = constant 

involves a force and must be introduced in the momentum equation to 

calculate the shape of the free surface streamlines. In turn, this shape 

has an effect on the flow pattern. 

Hence the flow pattern and the velocity field on one side, and 

the pres sure distribution and free surface streamlines on the other side, 

" 
cannot be calculated independently by successive steps as in the previous 

case. The flow pattern depends upon the absolute value of the velocity 

• 
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and may be known only by a combination of linear equatio"'s (continuity) 

with the non-linear momentum equation. The assumption of irrotationality 

may be introduced in the momentum equation, but this does not make 

the momentum equation linear. The considerations given above lead to 

so.me more general remarks on the importance of the boundary condi

tions. 

XI-5 

XI-5. 1 

REFLECTIONS ON THE IMPORTANCE OF BOUNDARY 

CONDITIONS 

NEW THEORETICAL CONSIDERATIONS ON THE KINDS OF 

FLOW 

From the previous considerations, it is seen that in any 

kind of flow the method to be used to determine the flow pattern depends 

upon the kind of boundary conditions and upon the assumption of rotation

ality. From this point of view, two major categories of motion may be 

distinguished which are encountered in all methods in hydraulics: 

analytical, numerical, and graphical methods or methods based on an 

analogy. The major categories are on one hand the irrotational motions 

under pressure and slow motion, and on the other hand, the free surface 

flow and flow with friction force. 

XI-5. 2 IRROTATIONAL MOTION UNDER PRESSURE AND SLOW 

MOTION 

The first category includes all irrotational motions under 

pressure, or considered as such, and slow motion in which the quadratic 

terms are negligible. 
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XI-5.2.1 The Case of Flow under Pressure 

The streamlines at the boundary are fully deter.mined since 

they are coincident with this boundary. The boundary conditions are 

expressed to satisfy the continuity principle, that is that the velocity is 

tangential to the boundary. The flow pattern depends completely upon 

linear equations only, expressing the continuity and the irrotationality 

principles. Then the flow pattern is relatively easily known. 

The velocity field gives the relative value of the velocity. 

The absolute value can be known when the velocity is determined at one 

point, either given by a boundary condition or calculated by application 

of the momentum equation at this boundary (for example by the Torricelli 

formula V = ..J 2 g z ) . 

Finally, the pressure distribution is determined from the 

knowledge of the velocity at any given point by application of the momen

tum equation. 

On the other hand, this kind of flow pattern, determined 

from linear laws, can be considered as the superimposition of simpler 

basic flow patterns. 

XI-5. 2. 2 The Case of Slow Motion 

In the case of slow motion the motion is mathematically 

considered as infinitely small, even with a free surface. Hence, all the 

quadratic terms .may be neglected and the momentum equation becomes 

linear. The free surface is considered as known at the beginning and 

denoted by a horizontal line. In that case various solutions 
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of flow patterns may be added.· 

For example, if cp 
1 

is the velocity potential function of a 

periodical gravity wave at the first order of approximation, that is when 

the convective inertia term is neglected, and <l>z is the potential function 

of another wave traveling in the opposite direction, <1>
1 

and <1>
2 

are 

determined by the system of linear equations: 

Continuity: 

Momentum (free [ llz<P + 8 <I> J 0 surface condition): a;:z g a z = 
z = 0 

Bottom condition: [~:t = 
= 0 

- d 

Hence cp = cp
1 

+ <l>z is the potential of the resultant "clapotis"(see Section 

XVI-3). 
<1>

1 
and <1>

2 
may also be calculated at a higher order of 

approximation from the non-linear free surface conditions, which take 

into account the convective inertia term. Then the solution cp , repre-

senting the two non-linear waves, cannot be obtained by simple addition 

of the new solutions <1>
1 

and <Pz given at a high order of approximation. 

It must be calculated from the basic equations. Similar considerations 

prevail in the case of irregular waves traveling at different velocities 

in the same direction. There is non-linear interaction. 

In conclusion, in order that the velocity potential functions 

and the stream functions may be added, they must depend upon a linear 

and homogeneous equation only. Also, the boundary conditions should 

be homogeneous. 
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XI-5. 3 FREE SURFACE FLOW AND FLOW WITH FRICTION FORCES 

The second category of motion includes all motions at the 

free surface or the motions where the friction forces have a non-negli-

gible effect, causing the motion to be rotational. 

XI-5.3.1 Free Surface Flow 

The free surface condition involves a force ( p = est). This 

force can only be inserted in the momentum equation which is an equality 

of force. 

The flow pattern depends not only upon the linear continuity 

equation but also upon the non-linear momentum equation, which is 

linear only in the case of uniform motion. The pattern must be calculated 

by combining the continuity relationship with the momentum equation at 

the free surface. Difficulties arise not only from this non-linearity, 

but also from the fact that the free surface is unknown. 

XI-5.3.2 Flow with Friction Forces 

Similarly, a friction force (resulting in a rotational term 

-+ 
different from zero) gives a boundary condition V = 0 . Such a boundary 

condition must be introduced in the momentum equation also. The non-

linearity of the momentum equation, caused by the convective inertia 

term, is the major cause of difficulty in studying this kind of flow. 

These mathematical difficulties show the importance of the 

irrotational 1notion under pressure and of the slow motions in theoretical 

hydraulics, even if they only represent very approximately the natural 

conditions . .. 
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XI-6 FLOW NET 

XI-6. 2 FLOW NET PRINCIPLE 

The flow net is a family of equipotential lines and a family 

of streamlines representing a complete two-dimensional flow pattern. 

(See XI-2.3.) 

The equalities v = a<j> = aw 
as an for a finite difference, 

= .61Jr 
.6n 

take the form 

First, .61Jr is chosen to be a constant in the complete velocity 

field, which means that the discharge .6Q between two adjacent stream-

lines is the same ( .61Jr = .6Q ). (See XI-2. 3.) 

Second, the interval .6<j> is chosen to be equal to .61Jr , 

which leads to .6s = .6 n . .6 s is the streamline element, while .6n 

is an equipotential line element with right angle intersections. Hence, 

.6s and .6n are the two sides of a curvilinear square, which tends to 

be an exact square when .6s and .6n tend to the infinitesimals ds and 

dn. 

This characteristic of a two-dimensional irrotational flow 

permits one to draw a co.mplete flow pattern as a mesh of squares. 

(Figure XI-12.) At any point, the velocity direction is given by the 

streamline. The velocity intensity given in relative value, is inversely 

proportional to the square sides. 

The graphical procedure for construction of a flow net depends 

on whether the flow is under pressure or with a free surface. 

.. 

316 



.. 

XI-6, 2 FLOW UNDER PRESSURE 

XI-2.6.2 Its Use 

The first case where the flow net method may be of very 

great use is for flow between two fixed boundaries, which corresponds 

to a flow under pressure. 

A flow net around a solid body with well determined boundary 

conditions at infinity follows the same rules of construction. Also, it must 

be noted that many flows at the free surface, such as in a wide and 

relatively shallow river in which rotation is about a horizontal axis, 

may be defined by a two-dimensional velocity potential function and 

studied by the flow net method (see XI-5. 4). However, components 

caused by wave effects or backwater curves must then be neglected. 

All these types of flow obey the same basic rules as the flows between 

fixed boundaries. 

XI-6. 2. 2 Method of Construction of a Flow Net 

Figure XI-12 begins in the regions where the velocity distri-

bution is evident, such as in a uniform or radial flow. Then a number 

of streamlines are selected as a function of the desired accuracy, taking 

into account that this number could easily be increased in a given area 

if a greater local accuracy is required. Then the equipotential lines are 

drawn intersecting the streamlines (including the boundaries) perpendi-

cularly, and forming squares with the streamlines. 

The simplest method of checking the correctness of the 

drawing is to draw the diagonal lines of the square mesh. These diagonals 

should themselves form smooth curves which intersect each other 
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FIGURE XI - 12 

FLOW NET STARTED IN RADIAL 

AND UNIFORM FLOWS 

perpendicularly. This is Prasil' s method, demonstrated in Figure 

XI-12. (See also Figure XI-14.) If these diagonals do not intersect, a 

second drawing is made by superimposition of transparent paper to 

correct the first mistakes, repeating the process until the desired result 

is obtained. Usually three successive drawings are sufficient to obtain 

an accurate flow net by trial and error. 

XI-6. 2. 3 Limitations of Validity of the Flow Net Method 

The limits of validity of the flow net method to study flow 

under pressure are the sa.me as those imposed by the assumption of 

irrotational motion. That is, the flow net method may be applied to 

study short convergent flow, or flow through porous medium when the 

318 



~--------L--··-

Reynold' s number is smaller than l. 

Divergent flow causing separation and wakes, long structures 

where the friction forces cause the motion to be rotational, and unsteady 

motion cannot usefully be studied by the flow net .method. In the case of 

a wake a flow net method may be used if the separation line is determined. 

(See Figure XI-13.) The pressure and velocity are then considered as con

stant along this line. Its determination is relevant to the method for flow 

with a free surface, which is the subject of the next section. 

XI-6. 3 FLOW NET WITH FREE SURFACE 

XI-6.3.1 The Free Surface is Known 

When the free surface boundaries are known by previous 

experiment, the same method as that explained to construct a flow net 

under pressure may be used. Moreover, a free surface condition is 

given which determines the distance between equipotential lines. 

Three cases may be distinguished: 

a. Flow through porous medium: the vertical distances 

between successive equipotential lines, following the rule ~cj> = constant, 

are constant as has been shown in section IX-2. 6 (Figure IX-5). 

b. Horizontal high velocity flow: a flow through an orifice 

or from a gate, with a contraction and under a high head (Figure XI-14). 

In this case, by application of the Bernoulli equation, V = '\} 2 g (H - z) , 

H being the total head while z refers to the exact elevation of any point 

under consideration above the level downstream of the gate. In many 

cases, z is always small compared with H , and V is considered as 
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FIGURE XI - 13 

WAKE 

FIGURE XI - 14 

z 

HORIZONTAL HIGH VELOCITY FLOW 
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a constant at the free surface. Hence, the distances between equipoten-

tial lines are equal. In a word, such a flow is determined by considering 

that the gravity force in the downstream part of the gate or the orifice 

is negligible. 

c. Flow with vertical velocity component (over a weir): 

the velocity at the free surface varies with z . According to the Ber-

noulli equation, V = ,Y 2 g z Hence, the distance between the free 

surface and the first streamline is given by: 

L:.s. 

XI-6. 3. 2 The Free Surface is Not Known 

= constant 
yZgz 

= L:.n = 

Theoretically, the continuity and the momentum equations, 

which give conditions such as those presented in a, b, and c above, should 

be sufficient to determine the free surface streamline and the complete 

flow pattern. The solution proceeds as follows: First, a tentative 

streamline is drawn intuitively. Then the distances between equipotential 

lines are calculated as shown in section XI-6. 3.1. The flow net drawn on 

this basis must be found to be consistent with the given fixed boundary. 

If it is not, a second trial is made by modification of the free surface, 

and so the solution proceeds. It is easy to conceive that such a trial 

and error method is tedious and inaccurate. 

Hence, although such a procedure is theoretically possible, 

it is unrealistic to attempt to determine a flow net with a free surface 

without an experiment (and more so, when it is a flow between two free 

surfaces such as a free falling jet). Most often the necessary experi-

ments for determining the free surface are self-sufficient for the 
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practical engineering purposes: since a model has to be built, it can 

also be used for measuring the pressure distribution; and the determination 

of the flow net is then a purely academic exercise. 

Only flow through an earth dam, because of its importance 

and the limit of validity of the experimental process, justifies the flow 

net method with a free surface. Some empirical relationships are given 

as a guide to start the flow net. Actually, however, it is more often 

studied by electrical analogy, but here also the determination of the 

free surface can involve difficulty. 

XI-6. 4 OTHER METHODS, CONFORMAL MAPPING 

XI-6.4.1 Relaxation Method and Analogical Methods 

A number of methods exist for drawing a flow net. All of 

them are based on the same principles, and a similar difficulty is en

countered in the determination of a free surface. 

The relaxation method is based on num.erical calculus. 

An analogy with an electrical field is very often used, by 

measuring directly the analogous equipotential lines between botmdaries 

at different voltages. Many systems exist using liquid resistance mesh, 

wetted earth, etc. 

The relaxation method and electrical method may be easily 

extended to three-dimensional irrotational flow. 

Another analogical method is based on the fact that the mean 

motion of laminar flow at constant thickness may be considered as irro

tational (see II-5. 4). Dye such as fluoresceine and permanganate give 

the streamlines directly. 

Finally, since the mean motion of laminar flow through a 
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porous medium is irrotational, it is very easy to use the analogical 

method also to study any two-dimensional or three-dimensional patterns. 

XI-6. 4. 2 S::onformal Mapping 

XI-6. 4. 2.1 It is out of the scope of this book to develop this powerful 

mathematical tool for studying two-dimensional irrotational flows with 

or without circulation of velocity. Only the principle is described in 

the following. 

Conformal mapping is based on the use of complex numbers 

(W = cp + i IJr) ( z; = x + i y = r ei6) and the use of the function of com

plex variable (W = f(Z) ). (See Figure XI-15.) 

Briefly, a conformal mapping operation consists of establish

ing a relationship between each point of a given flow pattern in the x, y 

plane and a point of another flow pattern in the cp , IJr plane. The first 

one is often the real flow under study. The second one is often a uniform 

flow pattern. Successive conformal mapping operations may also be 

y 

FIGURE XI - 15 

NOTATION FOR CONFORMAL MAPPING 
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done in order to pass step by step from a very complex flow pattern to 

a uniform flow. 

Conformal mapping can also be used for determining free 

streamlines by the application of the so-called Schwartz-Christoffel 

theorem. However, the application of this theorem requires the neglec-

tion of gravity forces. 

XI-6. 4. 2. 2 An Example: Flow Past a Cylinder 

Let us consider the transformation 

2 
W=U(Z+~) 

where W = <P + i 1jr is the equation for a uniform flow in the W -plane, i.e., 

in the system of axis <P-1Jr. This flow is parallel to the axis <P, and the 

streamlines being defined by 1jr = constant are perpendicular to the axis 

1jr (see Figure XI-16). 

The above relationship characterizes the transformation of 

a flow around a cylinder of radius R into a uniform flow. This is 

evidenced by the following operation aimed at separating the real part 

and ·the imaginary parts. 

<j>+i1jr=U(r 
iS 

e 

2 
= u (r cos e 

R2 
+-cos e 

r 
+ i r sin e . R . e) 1-sm 

r 

R2 
= u (r + -) cos e + i u (r 

r 

Then it is seen that the potential function is 

R2 
-U (r +-)cos 8 

r <P = 
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<po <p <p2 I 

FIGURE XI-16 

UNIFORM FLOW 

and the stream function 1Jr is 

¢ ¢4 3 
"'3 

"'2 
IJII 

% 

R2 . 
1Jr = u (r - -) sm e 

r 

which are those of a flow around a cylinder (see Section XI-4. 3. l. 2). 

XI-6. 4. 2. 3 The following transformations can be studied by using a 

similar approach: 

Uniform flow: 

Source at Z =A: 

Vortex as Z =A: 

Spiral vortex at Z =A: 

Source at -A, sink at +A: 

Flow through an aperature: 

Flow past a cylinder with 
circulation of velocity 

Flow at a wall angle 

325 

W = (a + ib) Z 

Q 
W = -1n (Z -A) 

2rr 

"K 
W = - :.._1n ( Z - A) 

2rr 

W = J....(Q- iK) 1n(Z- A) 
2rr 

W=.9._1nZ+A 
2rr Z - A 

Z = cosh W 

R 2 ,·K 
W = U ( Z + --z) - Zrr 1n Z 

w = zn(e =~) 
n 



XI-I Draw a square mesh in a two-dimensional bend such as shown 

on the following figure and calculate the relative pressure distribution on 

both boundaries and along the streamline starting from point A at the 

center of the upstream pipe. 

3o 

XI-2 Give the expression for the Navier-Stokes equations as a 

function of the stream function 1jr (x, y) in the case of two-dimensional 

motion. 

Answer: 
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and 

p [-

XI-3 Demonstrate that the velocity potential function for a three-

dimensional source is 

XI-4 

Q 
- 4TI r 

Determine the stream function and the potential function for 

~ 

a uniform flow of velocity V inclined at an angle a with the X-axis. 

Answer: 

1Jr = V ( y cos a - x sin a) 

XI-5 Sketch the streamlines and equipotential lines for a flow 

past a cylinder of radius R. Determine the corresponding stream function. 

Answer: 

327 

Rz 
= U (r - -) sin 8 

r 



XI-6 Study the various characteristics of a flow defined by the 

stream function 

"' = 
2 

- X 

Determine whether such a flow is rotational and calculate the vorticity. 

Is the fluid compressible? Plot the streamlines and the equipotential 

lines. 

Answer: 

XI-7 

u = 0 v = 2x 

au av 
a y - a X = - 2 (rotational); vorticity = - l 

au av 
8x + a y = 0 (incompressible) 

No equipotential line; it is a Couette flow between two 

parallel plates. 

Consider a uniform flow in the positive X-direction. The 

velocity varies linearly from V = 0 at y = 0 to V = 10 ft/sec at 

y = 10 feet. Determine the expression for 1!r. 

Answer: 

l 2 
1!r=zY 

328 

• 



• 

Xl-8 

means. 

Xl-9 

function 

Draw the flow pattern from a source to a sink by graphical 

Consider a flow around a cylinder defined by the potential 
R2 

cj> =- U(r - -) cos e. At which distance is the fluid velocity 
r 

disturbed by the cylinder by more than 50o/o, lOo/o and lo/o? Sketch these 

three lines of influence around the circle. 

Answer: 

They are circles of radii 

r = l.4R (50o/o) 

r = 3. 1 R ( lOo/o) 

r = 10 R (lo/o) 

Xl-10 Consider a free surface sink vortex in which the vertical com-

ponent of velocity will be neglected. Calculate the elevation of the free 

surface 'l(r). 

Answer: 

<I> 
Q 

tn r 
K [ 2 2] 1 = - 21T +- e, '1 = '100 - vr + ve 2g 21T 

Q2 + K2 1 
'1 = '1 -00 81T 

2 -z 
g r 
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XI-11 Consider the potential function 

Q K 
cj> = - tn r +- e 2rr 2rr 

Calculate the stream function and the general equations for equipotential 

lines and streamlines. Draw the corresponding flow pattern assuming 

1 
that 0 = K and Q = 4 K successively by means of graphical superposition. 

Answer·: 

XI-12 

Equipotential lines: 

Streamlines: 

-Q e K 
\jr = 2rr - Trr tn r 

Demonstrate that the potential function of a doublet is 

.P = K cos e 
r 

and demonstrate that streamlines and equipotential lines are circles, 

Answer: 

Take the potential function for a source and a sink of same 
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strength apart by a distance 2 a such as 

where r 1 and r 2 are measured from source and sink respectively. 

Insert the relationships (see the following figure): 

2 r2 + a2 rl = - 2 a r cos e 

2 2 2 
r 2 = r + a + 2 a r cos e 

0 Let 2 a z:rr = K and take the limit when a tends to zero. 

XI-13 Demonstrate that 

= (V + fJ V l d R d t 
R 8 R 

fJH = "lfR and pgV 

where H V is the particle velocity, r the circulation 

of velocity, dR an element perpendicular to to the streamlines, and dt 

an element of streamlines, as shown on the following figure . 
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XI-14 

Clv 
V+a dR 

R 

The stream function for a flow past a cylinder with circulation 

of velocity is 

1Jr = u ( r - ~ 
2 

) sin e - !rr ,(, n r 

where r is the circulation. Determine the position of the stagnation 

points on the cylinder as a function of r. Demonstrate that the total 

force exerted by the flow per unit length of the cylinder is 

Answer: 

V = 81Jr 
e - 8 r ' 

Total force: 

2rr 

X = -f pR 

0 

F = pur 

where 

cos e de = 0 

sin e = r 
4rrR U 

2rr 

p~r i . z e y = sm d8 = -pur 
0 
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XI- 15 Calculate the potential function for a flow past a "Rankine" 

body. The stream function is (see figure): 

Determine the shape of the Rankine body and calculate the pressure 

around it in terms of the value of the pressure at infinity p . 
00 

Answer: 

<I> 
Q rl 

+ u r cos e = z;;: tn-
r2 

Shape: 

Q 

\jr 0 gives 
z;;: ( e z - el) 

= r = u sin 9 

XI-16 Demonstrate by finite differences that in an irrotational flow 

the value of the stream function at a point ( 1) , \jr 
1 

is equal to 
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The subscripts i refer to point (i), as shown in the following figure. 

Answer: 

a "'j = ax B a 

= 
a 

Similarly, is determined. And since 

one finds t
1 

XI-17 In the case of a flow past an aperture of length 2 C and defined 

by the conformal mapping transformation 

Z = C cosh W 
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where Z = x + i y and W = <\> + i 1jr, demonstrate that the streamlines in 

the z planes are defined by a family of hyperbolae and that the equi-

., potential lines are defined by a family of ellipses of same foci. 

I Answer: 

x = C cosh <\> cos 1jr 

y = C sinh<\> sin 1jr 

Equipotential lines (<\> = constant) 

2 2 
X + y 1 = 

cz 2 c2 cosh <\> sinh <I> 

Streamlines (1jr = constant) 

2 2 
X y 1 = 2 2 -

c2 . 2 1jr c cos 1jr sm 

Foci 

( 0, C) and (0, -C) 

I~ 

• 
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XII-1 

XII-1. l 

CHAPTER XII 

GENERALIZATION OF THE BERNOULLI EQUATION 

AN ELEMENTARY DEMONSTRATION OF THE 

BERNOULLI EQUATION FOR A STREAM TUBE 

DOMAIN OF APPLICATION OF THE GENERALIZED 

FORM OF THE BERNOULLI EQUATION 

The Bernoulli equation in the case of rotational motion is 

valid along a streamline only. However, for practical purposes, a 

generalization to a stream tube of finite cross-section is required. 

This generalization is obtained by integration of the Bernoulli equation, 

which relates velocity and pressure along a streamline, over the 

cross- section. 

This integration is valid when the main flows are roughly 

"unidimensional" as they are encountered in practice in a pipe, tunnel, 

river and channel. In these cases, it is assumed that the components 

of motion perpendicular to the axis of the main motion are small. and 

have a negligible effect. This assumption permits a number of necessary 

approximations. However, this is a first cause of error and a first 

cause of difficulty when curvatures of the paths become noticeable. 

This limitation is not always cited in text books. 

To illustrate this fact, a Venturi tube is given as an example. 

When the path curvatures are small (see Fig. XII-1), the generalized 
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Bernoulli equation has to be applied referring to the mean value of the 

velocity in a cross-section. The pressure distribution is roughly 

hydrostatic. 

The pressure distribution along the wall of a Venturi tube 

is roughly given by the Bernoulli equation as seen in elementary 

hydraulics, i.e., by considering the mean velocity in the cross-section. 

When the path curvatures are important {see Fig. XII-2), the motion 

could be assumed to be irrotational in the converging part of the flow. 

The exact form of the Bernoulli equation has to be applied referring to 

the local values of velocity and pressure. The application of the general-

ized Bernoulli equation is impossible. It would probably be more exact 

to consider such a motion as irrotational and without friction, and to 

calculate the pressure distribution from the value of the local velocity 

along the wall. 

A similar consideration could be made concerning the up-

stream part of a diaphragm. The pressure in the corner will be more 

exactly known by considering the flow as irrotational rather than as 

rotational. This difference means, in practice, that the pressure 

distribution is known by considering in the Bernoulli equation the local 

value of the velocity rather than the mean value with respect to the 

cross-section, as demonstrated in the following section. 
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VELOCITY DISTRIBUTIONS 

FIGURE XII-1 

ROTATIONAL FLOW: GENERALIZED BERNOULLI EQUATION 

I I - --------

-----i-·~~~ 

FIGURE XII-2 

IRROTATIONAL FLOW: BERNOULLI EQUATION VALID 

LOCALLY 
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XII-1. 2 AN ELEMENTARY DEMONSTRATION OF THE BERNOULLI 

EQUATION 

XII-1. 2. l At first, a demonstration of the Bernoulli equation for an 

infinitely small stream tube of cross-section !::.A (as shown in elemen-

tary hydraulics) will be briefly recalled. In this demonstration, the 

velocity in a cross-section is assumed to be a constant as it would be 

for a stream tube of infinitely small cross-section. The flow will be 

considered unsteady. 

' D n-Z 2 -------"----

!::.S 

s 'I'z ·t -- -----------'-

FIGURE XII-3 

DEMONSTRATION OF THE BERNOULLI EQUATION IN A 

STREAM TUBE OF INFINITELY SMALL CROSS-SECTION 

Consider a mass of fluid ABCD at time t in a stream tube 

(Fig. XII-3). By continuity: 

= 

339 



.C:.A
1

, .C:.A
2

, V
1 

and V
2 

being the cross-sections and velocities in 

AB and CD respectively. 

This mass of fluid ABCD becomes A'B'C'D' at 

time t + dt . 

The volume AA' B' B is .C:.A
1 

V 
1 

dt and the volume CC' D' D 

is .C:.A
2 

V 
2 

dt . By continuity: 

= 

XII-!. 2. 2 Now the variation of kinetic energy of this mass of fluid is 

equated to the work of the applied forces, pressure and gravity. 

In case of steady motion, the kinetic energy of the common 

part A' B' CD remains the same, and the variation of kinetic energy is 

equal to the difference in kinetic energy of CC' D' D and AA' B' B that 

is: 

This is the variation of kinetic energy with respect to space. 

In case of unsteady motion, the total mass of fluid ABC D 

changes also its kinetic energy S
c v2 

p T dS dA 
A 

with respect 

to time. This change of kinetic energy during interval dt is 

-S S c a (; ';2 ) d s dA 

.C:.A A t 
= 

.C:.A being the value of the cross-section at any place. When .C:.A is a 
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constant between A and C, this expression becomes, with: 

c s s dAdS=.6.AS 
.6.A A 

p.6.A 
av 
Bt 

Xll-1. 2. 3 These variations of kinetic energy have to be equated to the 

work of applied forces - gravity and pressure - during the same interval 

of time. 

The work of gravity force is zero for the common part 

A' B' CD and it is as if the mass AA' B' B were raised to CC' D' D 

The work of gravity forces is equal to (-g) times the rate at 

which the mass: p .6.A
1 

V 
1 

dt ( = p.6.A
2 

V 
2 

dt) is raised from the 

height z 
1 

to the height z
2 

that is, weight x distance: 

The pressure forces on the curved walls of the stream tube 

do not contribute to the work since they act in a direction perpendicular 

to the flow. Hence, the work of the pressure forces is limited to the 

activity of p
1

, and Pz acting normally to .6.A
1 

and .6.A
2 

respectively, 

and in opposite direction. That is, Force x Distance : 

p l .6.A l V l dt 
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XII-1.2o4 Equating these expressions and dividing by dt and intro-

clueing the work of the friction forces F , the generalization of the 

Bernoulli equation for a stream tube becomes: 

+ P2 + P gz2) 

iJV 
8t 

+ p 1 + p gz 1 ) t!.A 1 V 1 = 

dSdA + F 

Since, t!.A
2 

V 
2 

= t!.A
1 

V 
1 

= t!.AV by continuity, dividing by t!.AV 

and neglecting the friction force leads to the previously seen form of the 

Bernoulli equation valid along a streamline, which is consistent: (see 

Chapter X-30 3) 

+ P2 + P gz2 ) - ( P 

and dividing by p g and introducing the definition of the total head H 

H 

iJH 
as 

= 

+ 1 
g 

+ _E._ 
pg 

iJV 
8t 

+ z 

= 0 

XIl-lo 2 o 5 The application of the Bernoulli equation as given above for a 

pipe is very simple 0 It is this form which is used in engineering practice o 

However, in order to show all the simplifications which are required 
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for this generalization, it has been judged useful to give a more rigorous 

demonstration involving a number of correcting factors. These correcting 

_.,. factors are most often neglected and not very well known. Fortunately, 

I 
they are effectively negligible for the accuracy required in engineering. 

However, it will be seen that the Bernoulli equation, which is too often 

presented as an exact formula in elementary hydraulics, is in fact only 

approximate. 

XII- 1. 3 MEAN VELOCITY IN A CROSS-SECTION 

Consider a cross-section of a stream tube defined as being 

perpendicular to streamlines. In this cross-section, the velocity 

generally varies both with respect to space and with respect to time, 

which is due to turbulence (see Figure XII-4). 

FIGURE XII-4 

• MEAN VELOCITY IN A CROSS-SECTION 
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Hence, the mean discharge has to be defined by a double 

integration with respect to space and time: 

l tT St -Q = T V dA dT 

the mean velocity being: 

- Q l ST l St ~ u = A = T A 
V dA dT 

0 

It has been seen in the theory of turbulence (Chapter Vll-l. 3) 

that at a given point - -=+ y. v = v + 

with: 

- l ST V dT -- l sT-v = T 
and V' = T V' dT = 0 

0 0 

::;. 
Similarly, consider the variation of the mean value U of 

V with respect to the cross-section . 

such that 

- l U = A 

-- ~ ..... v = u + u• 

... 
U may be defined: 

=;. 
VdA 

where U' is a fluctuation value, either positive or negative, but its 

total sum equals zero: 

l 
= A St 
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1 ~1 1·s j--uj The greatest value of U' at a wall boundary. 

Combining these definitions gives: 

in which: 

~ ::;i;~ .. ~ _.. 
V = V + V' = U + U' + V' 

~ 
U' dA = 0 and 1 

T 

_.. 
V' dT = 0 

-z v-;-z 
But it has to be noted that U' and are always positive. 

It is simpler in the following calculation to use coefficient 

-- ___. ~ -factors <r and X defined by U' = <rU and V' =XU 

such that: 
--')- ~ 

V=U(l+<r+X 

It may be noted that while <r is a constant with respect to 

time, X may change with respect to space in case of non-isotropic 

turbulence. Hence, the mean value of X will have to be taken with 

respect to both space and time. 

This correction factor X , caused by turbulence, would 

be directly obtained from the Reynolds' equation by considering the ratio 

of the fluctuating terms and convective inertia terms. It is generally 

neglected in hydraulics. 

Xll-2 

XII-2. 1 

GENERALIZATION OF THE BERNOULLI EQUATION TO A 

STREAM TUBE 

AVERAGING PROCESS TO A CROSS-SECTION 

The principal of conservation of energy applied to· an ele

mentary stream tube of infinitesimal cross section A is given by following 

the formula demonstrated in Xll-1. 2. The fact that the cross section is 

infinitesimal makes this formula exact, since such cross section is actually 
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a streamline. 

av 
atdSdA-F = 0 

Since this sum is always equal to zero for one streamline at a given 

time, its mean value with respect to time is always equal to zero also. 

(This operation is the same as that used to establish the Reynolds' 

equations from the Navier-Stokes equations (see Vll-1. 6) . ) 

Similarly, its mean value with respect to a finite cross 

section A should always equal zero, and this operation is written: 

1 
A Ss ('~) dA = 0 

A 

where (':') is the above total sum. Now if instead of taking the mean 

value with respect to the cross section, one takes the total value 

S S ('~) dA : it is also always equal to zero. And taking both the 
A 

total value by an integration to the cross section A and the mean value 

with respect to time leads to: 

p 
av 
at VdSdA-FJ dT = 0 • 
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In the following each of these terms will be successively considered. 

XII-2. 2 VELOCITY HEAD TERMS 

Introducing the value of V as a function of U , the velocity 

head term becomes successively: 

3 ~ ST SS (crt x) dAdT + 3 ~ ST SS (cr+x)
2 

dAdTJ 
o o A 

and X being usually small, 
3 

( cr +X) has been neglected. 

Now considering these integrals successively, since cr 

varies only with space while X varies with both space and time, the 

first integral becomes: 

~ r: ss (crt X) dA dT = 
·-e· .·o ·.,A_ 

SS erdA + SS 
A A 

l STXdTdA = 0 
T 

0 

and similarly the second integral becomes: 

(Since the double product term 2 St erdA 
1 ST X dT E 

T o 

0 

0 ) 

These last two terms are different from zero and are always 

positive . The notation cr
2 

and X 
2 

will be employed such that: 
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xz A St 1 ST x2 
dT dA = T 

0 

And finally: 

~ SOT St vz 3 - -
p T VdAdT = p !!_,p- ( 1 + 3,,.2 + 3 x2

) 

with 

"' = 

For laminar flow in a circular pipe: 

= 0 

and as found in elementary hydraulics: 

For turbulent flow: 

XII-2.3 

3 .,.z 

~ 

= 0.05 

0. 05 to 0. 01 

PRESSURE TERMS 

Now consider the pressure terms 

1 
T s T ss p'~ V dA dT 

o A 
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Because of turbulence: 

p~' = p':' + p' = P~' ( 1 + rr ) 

1 ST 
T 

0 

and p~j{ = where rr 

Introducing this value: 

~ s T s s p~' U ( 1 + rr) ( 1 + .,- + X ) dA d T 
o A 

= 0 

= 

~ ST SS (o-rr+ xrr) dAdTJ 
o A 

The mean values of the products o-rr and X rr are different from zero. 

However, the correction caused by rr is so small that it is usually 

neglected. 

The Bernoulli equation is sometimes generalized for some 

curved flows at free surface, such as flow over a weir. In this case, 

p~' may be considered as the sum of a hydrostatic term, the value of 

which is (p + p gz) and an additional term 6p . This additional term 
a 

is zero when the curvatures of the paths are small, but becomes impor-

tant in some cases, which causes a correction factor 6 such that: 

6 1 St 6p 
VdA = A p':< 

St P~' VdA = P'' UA( 1 + 6) 
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li being positive in case of flow in the positive direction with a curvature 

upwards, and negative when curved downwards. These facts have been 

illustrated in the previous chapters by Figs. X-2, X-3 and X-4. 

XII-2. 4 GRAVITY TERMS 

Similarly, the gravity term is easily found to be: 

~ s T ss p gz V dA dT = p gz UA = p gz Q 
A 

since all the correction factors appear to be of the first degree and have 

a mean value of zero. 

XII-2. 5 LOCAL INERTIA TERMS 

Lastly, consider the local inertia term: 

l s T ss s 8 V V dA dT dS 
To ASPST 

It may be written successively: 

2 
V dA dT dS 
T = 

l 
T ST SS [1 + 2(cr+x) + (cr +x)

2
]dAdTdS 

o A 

Simplifying as previously seen, it becomes: 

p s A 
s 

dS 
8t 
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XII-2. 6 PRACTICAL FORM OF THE BERNOULLI EQUATION FOR 

A STREAM TUBE 

Taking account of the above correction factors, and dividing 

by Q = UA , the generalized form of the Bernoulli equation for a 

stream tube is: 

au( "') d at 1+"3 S+F 

2 2 
If cr and X and 6 are neglected, dividing by pg leads to the 

common form of the Bernoulli equation used in engineering practice: 

2 -

( 
u2 P2 
-+-+ 
2 g pg 

2 -

( u 1 pl ) 1 s au - - + - + z = - - dS+ F 
2 g pg 1 g s a t 

In the case of a uniform flow in a pipe of length L , the local inertia 

term becomes: 

1 
g 

au 
at dS = L 

g 
dU 
d t 

This is the formula which must be used to study, for example, surge 

tanks, locks, etc. 

XII-2. 7 AN APPLICATION TO SURGE TANK 

Because of its importance in engineering practice, an example 

of the generalized Bernoulli equation for unsteady ·motion is given. The 
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case of a surge tank in the case where the discharge in the penstoke is 

nil as presented in Fig. XII-5 is analyzed. The application of the Bernoulli 

equation between points a and b gives: 

) ( v~ Pb ) 1 
+ za - 2 g + pg + zb = (Head Loss)ab + g 

is negligible since v a 
in the reservoir is very small. 

also very small and is usually neglected. Moreover, 

av dL 
at 

is 

= 

atmospheric pressure. The head loss term includes the head loss at the 

entrance of the gallery; the head loss in the gallery Ll.H = 

and the head loss due to the bottom diaphragm of the surge tank 

The head loss in the surge tank is usually negligible as is 

FIGURE Xll-5 

SURGE TANK 

y2 
b 

2g 

The local inertia term is usually small enough in the reser-

voir and in the surge tank to be neglected. It is taken into account in the 

gallery only. 
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Hence, 

l 
g 

av 
8t dL = 

L dV 
g dt = L dQ 

gf dt 

where f is the cross section of the gallery. In the case of a relatively 

short gallery, the value for L could be increased by a correction factor 

to take into account the local inertia of the almost-radial flow near the 

entrance. Finally, with Z = za - zb , the basic dynamic equation for 

studying a surge tank is: 

z = 
2 

[ f + K ] V + L dO 
D a-b Tg gf dT 

where K b is a friction coefficient for singularities between a and b . a-

The continuity is Q dt = F dZ , F being the cross-section at the free 

surface of the surge tank. This book will not develop a method of solution 

for this system of equations established in assuming no discharge in the 

penstoke. 

Xll-3 

XII-3. 1 

LIMIT OF APPLICATION OF THE TWO FORMS OF THE 

BERNOULLI EQUATION 

THE TWO FORMS OF THE BERNOULLI EQUATION 

In the case of steady flow without friction, two forms of the 

Bernoulli equation are almost identical: 

vz 
+ ..E... + constant 2g z = pg 

( 1 + "') 
uz 

+ ..E... + constant 
2g 

z = pg 
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Strictly speaking, neither of these equations are valid in any 

case since the conditions required for establishment of the Bernoulli 

equation can only be approximated. However, they are essential in many 

cases. In these cases, it is important to remember the following 

as surnptions. 

The first form of the Bernoulli equation is valid for irrota-

tional flow, that is in convergent flow through short structures. V is 

the local velocity. In case of turbulence, V is replaced by the mean 

local velocity with respect to time: V . The streamlines may be curved 

but V must never be taken as the mean velocity in a cross-section. 

The pressure distribution is given as a function of the local 

value of V and z The pressure distribution at the walls is very 

close to the pressure distribution at the limit of thin boundary layers. 

The second form of the Bernoulli equation is valid for uni-

dimensional flow where the motion is rotational, but the curvatures of 

the paths must be small. U refers to the mean velocity in the cross

section, and the kinetic head 
u2 
2g 

must be affected by a correction 

factor ( l +a) which is often neglected in practice. a is due to turbu-

lence and to the variation of the velocity in a cross-section. 

The pressure distribution is hydrostatic in a cross-section, 

or more exactly, very slightly smaller in the center of the flow than at 

the boundary because of the turbulent fluctuations (see Sections VIII- 2. 2 

and VIII- 2. 3). The pres sure distribution from one eros s-section to another 

varies as a function of the square mean velocity in these cross-sections 

354 



" 

XII-3.2 VENTURI AND DIAPHRAGM AS MEASURING DEVICES 

In practice it is difficult to know the exact value of the 

correction factor a . Moreover, a number of assumptions such as 

small curvature of the paths, negligible head loss, etc. , are not always 

satisfied. 

It must be understood, therefore, that a Venturi used as a 

device to measure a discharge by a simple application of the Bernoulli 

equation without correction factors is not an accurate device in itself. 

It is for this reason that manufacturers must give a corrective curve 

obtained experimentally by measuring the discharge in a calibrated tank. 

An overall correction factor, which differs for each kind of Venturi, 

must be given as a function of the Reynolds' number at the throat. 

A similar statement could be made for a diaphragm where 

the upstream pressure distribution could preferably be given by consid

ering the local value of the velocity rather than the mean value in a 

cross-section. The downstream pressure distribution is roughly 

hydrostatic, since the flow is either almost parallel or very slow out of 

the vena contracta. (See Fig. XII-61 

XII-3. 3 EXPERIENCE OF BANKI 

The application of the Bernoulli equation to a Venturi is 

well-known. Despite the approximatidns which have been indicated pre

viously, it is effectively verified that when V increases in the convergent, 

p'~ decreases as rv and conversely, p':' increases also as rv 
in the divergent. If the divergent is too rapid, the flow separates and 
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p'~ is almost a constant around the jet. This is also the case of a jet 

arriving in a reservoir (see Figure XII-6, Section 5). 

Now, one can question whether any change of p'~ also changes 

V according to the Bernoulli equation. This could be realized by an 

experiment, initially conducted by Banki, where the pressure variations 

are transmitted to the inside flow of a pipe through a membrane (see 

Figure XII-7). When the pressure within the tank increases, the pres

sure, transmitted through the membrane in the pipe, also increases; 

hence V decreases, and the rubber membrane expands. Also, when the 

pressure within the tank decreases, V increases and the rubber mem

brane contracts. This paradoxical result is in accordance with the 

Bernoulli equation. However, this experience is difficult to realize 

because of flow separation. This fact also demonstrates the inherent 

deficiencies of the Bernoulli equation applied to a stream tube. Finally, 

the change in the rubber shape changes the flow discharge in the pipe 

and the motion is unstable. It is really a problem of hydroelasticity. 

RUBBER PIPE SECTION 

FIGURE XII-7 

EXPERIENCE OF BANK! 
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XII-4 DEFINITION OF HEAD LOSS 

XII-4. l STEADY UNIFORM FLOW 

Consider the case of steady flow in a pipe. The head loss 

may be calculated by theory in a number of cases where the flow is 

laminar and the cross-section is of simple shape, such as circular or 

square. But in the case of turbulent flow, the value of head loss cannot 

be obtained by theory and must be measured by experiment. 

equation 

In this case, the only theoretical purpose of the Bernoulli 

P'f] +- -pg 
= 

is to define the value of the head loss ~H between two considered points 

by the difference between the total heads at these points. This does not 

pre sent any difficulty as long as the flow is uniform, since in this case 

* Pz 
~H = 

pg 
and "l = "2' 

XII-4. 2 HEAD LOSS AT A SUDDEN CHANGE IN THE FLOW 

A sudden change in a uniform pipe, such as caused by 

a diaphragm or a bend, has an effect on the downstream flow at a great 

distance from it. The head loss due to this change may be obtained by 

extrapolating the pressure lines as shown by Fig. XII- 8. (A pressure 

value given by a piezometer located near a discontinuity, a bend or an 

intake has no value in evaluating the head loss because the flow is not 

uniform. The pressure is locally influenced by a complex flow pattern.) 
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THE HEAD LOSS 6.H CAUSED BY A SINGULARITY OR SUDDEN 

SUDDEN CHANGE IN A UNIFORM PIPE IS WELL-DEFINED BY 

EXTRAPOLA TIO]\) 
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But, in the case of non-uniform flow, it is more difficult since 

different from 
u2 

2 
2g and particularly "'l is different from a 2 and 

they are unknowns and vary with U. Even if they are considered as 

known, the definition of such a head loss involves lack of accuracy as 

is 

evidenced by Figure Xll-9. Moreover, it is impossible to separate the 

value of head loss in a close succession of such sudden changes. Be-

cause of their interaction, a linear addition of the various head losses 

is not valid. 

XII-4. 3 HEAD LOSS IN A FREE SURF ACE FLOW 

It is interesting to note that any change in a free- surface 

flow gives no extra head loss. Indeed, the initial upstream level and 

downstream level are always the same provided the considered cross-

sections are far enough from the discontinuity as is illustrated by 

Fig. XII-10. The increase of head loss in one place is always compen-

sated by a decrease of head loss in another place. Hence, the head 

loss definition of a discontinuity or sudden change in a free-surface flow, 

such as that caused by a grid, must be specified by the relative location 

of two cross .. sectional planes between which the head loss is considered. 

The case of Fig. Xll-10 is in fact slowly modified because 

of the modification due to the transport of solid matter, as is shown by 

Figs. Xll-11 and Xll-12. 

It is out of the scope of this book to investigate the problem 

of backwater curve with movable bed . 
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FIGURE XII-1 0 

A DISCONTINUITY IN A FLOW AT FREE SURFACE DOES NOT 

CHANGE THE TOTAL VALUE OF THE HEAD LOSS D. 

FIGURE XII-11 

SMALL DAM 

/ 

z12 
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FIGURE XII-12 

LARGE DAM 

XII-4. 4 EFFECT OF LOCAL INERTIA ON HEAD LOSS 

/ 

By having an effect on the velocity distribution in a pipe, 

and on the corresponding shear stress, local inertia has an important 

effect on the value of the head loss (see Fig. Xll-13). 

Head loss in a given flow at a given time cannot theoretically 

be considered as equal to the value of the head loss of the steady flow 

which would have the same instantaneous value of mean velocity. 

The head losses for the same value of the mean velocity are 

different for steady flow, accelerated flow, and decelerated flow. This 

may also be noticeable for a discontinuity like the bottom orifice of a 

surge tank, where the flow pattern is influenced by an instability 

phenomenon. 
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Steady Flow 

Velocity Distributions 
for Various Discharges 

FIGURE XII-13 

Unsteady Flow 

Accelerated and Decelerated 

Velocity Distributions at Various 
Time 

A COMPARISON OF VELOCITY DISTRIBUTIONS IN A PIPE 
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However, due to lack of experimental data, unsteady flows 

are often studied with a head loss given by an empirical law which was 

experimentally obtained in the case of steady flow. As in the case of 

steady flow the Bernoulli equation may be used to define the head loss 

in an unsteady flow, but even more difficulties are encountered in deter

mining the head loss experimentally in unsteady flow than in steady flow. 
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XII-1 Two adjacent tanks have horizontal cross sections s
1 

and 

s2 respectively. The difference of level between these two tanks at time 

t = 0 is h
1 

- h
2 

=h. An orifice of cross section A is open between the 

two tanks at time t = 0. The discharge coefficient of the orifice is 0. 6. 

Give the expression for the time T after which the level in the two tanks 

is the same. 

Answer: 

XII-2 Consider four reservoirs, A, B, C, and D, connected 

together as shown on the following figure (not scaled) in which the level 

is maintained at: 

A: = 60 feet B: = 40 feet 

C: zC = 50 feet D: zc = 10 feet 

respectively. The pipe between A and B is 10 inches in diameter and 

3000 feet long. The pipe between C and D is 12 inches in diameter 

and 6000 feet long, and finally; the connecting pipe MN is 5500 feet long, 

M being 1000 feet from reservoir A, and N being 2000 feet from reser-

voir D. The friction coefficients f of these pipes are: 0. 20 for the 10 
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inch and the 12 inch diameter pipes, and 0. 224 for the pipe between M 

and N. The diameter of the pipe MN is such that the discharge through 

MN is 1. 2 £t
3
/sec. Determine the discharges between AM, MB, CN, 

and ND and the diameter of the pipe MN. 

c 0 

M N 

Answer: 

QAM 
3 = 3, 05 ft /sec 

QMB 
3 = 1. 85 ft /sec 

0 cN 
3 = 3, 2 ft /sec 

QND 
3 = 4, 4 ft /sec 

XII-3 Consider a hydroelectric installation including a large reser--

voir where the level remains practically constant, a horizontal gallery 
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of length L and circular cross section f, a surge tank of horizontal 

cross section F and a penstoke as shown in the following figure. The 
2 

head loss in the gallery is P = ± P
0 

(.:::) where W is the average water 
0 

velocity as a function of time, and subscript o refers to steady state 

conditions. 

1) Demonstrate that the governing equation for the elevation 

z in the surge tank is: 

+z+P=O 

2} Give the period of oscillation of the motion in the gallery. 

(P will be neglected for this calculation.) 

3) Give the amplitude of oscillation of z in the surge tank 

in the case where the initial discharge ot = f wa is sud

denly stopped to a zero value and to a smaller value 

0~ = f W~. (P will again be neglected.} Explain 

qualitatively the influence of P. 

SURGE TANK 

__ JF=L:6000fl~ ~ 
PEN STOKE~ 
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Answer: 

XII-4 

2} 

3} 

T = 2rr J L F 
gf 

z = (W - W 1 } {LT 
a a '\}gF 

. 2rrt 
Sln "'!'" 

Establish the basic equations of motion for unsteady flow in 

parallel pipes and in series. 

XII-5 Establish the equation of motion caused by the sudden opening 

of a gate for a manifold such as shown in the following figure. 

L 

GATE -•·FI 

@ 
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Answer: 

Q2 2 

z + 
1 + K 

(Ql+Q2+o3) 

zl = 
2 gDZ o-1 g 

Q2 2 
d (Q2 + 0 3) 

z + 
2 

+ K 
(02 +Q3) L 

zl = + 2 gD 
2 gDZ o-2 2 g dt 

and so on. 

K = coefficient for head loss 

.. 
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CHAPTER XIII 

THE MOMENTUM THEOREM AND ITS APPLICATIONS 

XIII-I EXTERNAL FORCES AND INTERNAL FORCES 

XIII-I. 1 THE CASE OF AN ELEMENTARY FLUID PARTICLE 
_, 

---> dV 
The momentum equation F = m dt has been expressed 

in differential form for an elementary fluid particle of unit volume and 

mass p (see Chapter VI). One may recall that this momentum 

equation takes the form of the Navier-Stokes equation equating the 

inertia force of a unit volume with the corresponding applied forces. 

The applied forces have been divided into external and 

internal forces (see Chapter V). The internal forces are due to pressure 

and friction. They are by definition vectorially equal to zero and do 

not contribute to a net torque on the considered particle. This definition 

is based upon Newton' s Third Law stating that action equals reaction. 

The external forces are divided into surface forces due to 

pressure and friction, and a body force due to gravity. These forces 

have a total sum different from zero and hence impart a motion to the 

elementary fluid particle. 

XIII-I. 2 MOTION OF TWO ADJACENT ELEMENTARY FLUID 

PARTICLES 

.. 
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Consider two adjacent fluid particles as shown in Figure 

XIII-1. The external forces acting on the two adjacent sides sum 

vectorially to zero according to Newton' s Third Law as previously 

stated. Hence only the external forces acting on the outer limits of 

this group of two elementary fluid particles affect their overall motion. 

Therefore, consideration of these external forces permits a theoretical 

analysis of the overall motion of·these two particles together, but does 

not permit an analysis of the relative motion of the one particle with 

respect to the other . 

XIII- l. 3 GENERALIZATION FOR A DEFINITE MASS OF FLUID 

By generalization for a definite mass of fluid composed of 

an infinite number of elementary fluid particles, all internal forces sum 

to zero and produce no net torque on the definite mass of fluid. The 

overall motion of this mass of fluid depends only upon the external forces 

applied to it. Consequently, this simplification does not permit a study 

of the internal motion within the mass of fluid nor of the fine structure 

of the flow pattern. 

XIII-1. 4 MATHEMATICAL EXPRESSION OF MOMENTUM 
__, 

Considering the separation of forces into internal forces F. 
1 -

and external forces - dV 
Fe , the mom_:ntum equation F = m dt then 

+ ~Fe = m ~~ . Now since ~:E\ = 0 (by definition), 

"'-F - d(mV) h" h Th · f or L~ w 1c means: e variation o e- dt 

becomes: 
- .... 
F =~F. 

_,.1 

dV 
= m-

dt 
-then ~F 

e 

momentum (mV) with respect to time is equal to the sum of external 
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forces acting on the mass of fluid. 

XIII-1. 5 AN IMPORTANT REMARK ON FORCE, INERTIA, WORK 

AND ENERGY 

Rather than express the momentum equation 

_, 
_, dV 
F=mdt 

for 

an elementary fluid particle as an equality of forces and inertia, consider 

an equality of work and kinetic energy as previously proposed in Section 

-- dV _. fmv 2
) X-1. 1: F dS = m dt dS = d\-2- • The separation between internal --and external forces is theoretically always possible. Hence: :1: (F dS) 

e 

+ ~ ( Fi dS) = d~m J2
) • However, in spite of the fact that the total sum 

..... 
of the internal forces is zero by definition (~F. = 0), the work of these 

1 
_.. ..... 

internal forces does not equal zero, i.e., :E(F. dS) ~ 0. 
1 

To illustrate this point, consider a uniform flow in a pipe 

(see Figure XIII-2). The external forces acting at the wall-boundary 

have a total sum different from zero, thus tending to move the pipe in 

the direction of the flow. But the existing internal forces sum to zero. 

However, these internal forces do work and this work is the cause of 

the head loss. The head loss expresses the transformation of energy 

lost by friction into heat. 

Thus, insofar as the energy equality is concerned, internal 

forces may not be neglected. 

XIII-1. 6 FIELD OF APPLICATION 

From the previous considerations, it can be deduced that, 

in practice, the difference in application of the momentum equality and 

the energy equality lies in the emphasis on the importance of internal 
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FIGURE XIII-1 

EXTERNAL FORCES AT THE BOUNDARIES 

OF TWO ADJACENT FLUID PARTICLES MAY 

BE CONSIDERED AS INTERNAL FORCES IN 

ORDER TO STUDY THEIR OVERALL MOTION 

v 

FIGURE XIII-2 

EXTERNAL FORCES TEND TO MOVE THE PIPE 

DOWNSTREAM BUT THEY DO NOT WORK. THE 

HEAD LOSS IS CAUSED BY THE WORK OF INTERNAL 

FORCES, WHICH HAVE A TOTAL SUM EQUAL TO ZERO 
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forces, insofar as the phenomena being studied are concerned, A 

number of examples in this Chapter will illustrate this fact. 

A considerable number of hydraulic problems are simplified 

by the fact that the sum of the internal forces is zero. It is for this 

reason that the momentum theorem is a master key for opening a large 

number of doors which are definitely closed to the other processes 

based on the conservation of energy equation. The momentum theorem 

is used to calculate the overall effects of a mass of fluid, however 

complex the flow, without dealing with the fine structure of the flow 

pattern. However, to apply the method which consists of considering only 

the external forces to calculate the change in momentum requires a perfect 

knowledge of boundary conditions at the extremities of the mass of fluid 

under study. This point is illustrated in Section XIII-5. 

XIII-I. 7 MOMENTUM THEOREM AND NAVIER-STOKES EQUATION 

The momentum equation, like the Bernoulli equation, can be 

established by several demonstrations. One demonstration could make 

use of the basic Navier-Stokes (or Eulerian) equation by integration of 

all the involved forces causing motion of an elementary particle of fluid 

mass p to the forces involved in the motion of a definite mass of fluid 

m, This is evident since the Navier-Stokes equation is the momentum 

equation for a mass of fluid of unit volume. 

Instead, a direct vectorial demonstration is given for an 

arbitrary mass of fluid of finite dimensions. Although the momentum 

theorem is used mainly to solve problems in steady flow, the m.ore 
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general case of unsteady flow will be studied here. This method will 

illustrate the difficulties encountered in the application of the momentum 

theorem to unsteady motion. 

XIII-2 1V1A THE1V1A TICAL DEMONSTRATION 

XIII-2. 1 1V1ATHE1V1ATICAL EXPRESSION OF THE TOTAL MOMENTUM 

IN A FINITE VOLUME 

By definition, the product of mass and velocity is momentmn: 

-Momentum = m V. Hence the momentum of an elementary particle 

-fluid of mass p is pV . Therefore, the total momentum of a definite 

mass of volume D , in which the velocity vector varies both with time 

and direction, is SSS D p V d D, where dD is an element of the volume 

D. 

XIII-2. 2 NOTATION 

A demonstration similar to that presented in Section Xll-1. 2 

is given. One recalls that a mass of fluid in an elementary stream tube 

was successively considered at time t and time t + dt (see Figure 

Xll-3). However, for more generality, the mass of fluid under study 

will not be limited by a stream tube, but may be any mass of fluid in a 

given flow as shown in Figure XIII-3. This mass may have any size and 

any shape. 

Assmning this mass of fluid to be defined at a given time t 

by an enclosed area A , the same mass of fluid at time ( t + dt) will 

be defined by an enclosed area A', quite similar to A • These two 
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A 

FIGURE XIII-3 

MOMENTUM NOTATION 

enclosed areas divide the space occupied into three domains: D
1 

, D
2 

, 

and D 3 . While D 2 has a finite dimension, D 
1 

and D
3 

are by 

definition infinitely small since the interval of time dt is infinitely 

small. 

Successive values of the total momentum of the fluid in these 

three domains will be calculated. 

XIII-2. 3 CHANGE OF MOMENTUM WITH RESPECT TO TIME 

The momentum of fluid enclosed in the common part D 2 at 

time ~is SSS D p V dD , and at__;ime t + dt since the velocity becomes 

(v + ~~ dt) = 

2 
SSS D / c:v + ~ dt) dD. 

Hence the difference or variation of momentum during the 
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interval of time dt is: ... 
= sss D 2 fJ~tV dt dD 

Note that the integral is the product of a finite number D times an -infinitesimal number a~: dt 

('('(' D a(tv 
Dividing by dt, the variation of momentum 

per unit time is: JJJ u dD 

2 
Thus it can be seen that this term (which is deduced from the 

variation of :momentum with respect to time) has a zero value in the ... av 
f!t 

case of a steady flow since = 0. 

XIII-2. 4 CHANGE OF MOMENTUM WITH RESPECT TO SPACE 

XIII-2. 4.1 The momentum of fluid enclosed in domain D
1 

(see Figure 

XIII-4) at time t is SSS p V dD which is dimensionally the product 
Dl 

I 
I 
I 
I 

v 

: ...... 
W:;:::...~.:::...Jt---4~ V n 

FIGURE XIII-4 

MOMENTUM NOTATION 
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of a finite number l .... v I and an infinitesimal number D
1 

. Domain D
1 

may be considered as containing elementary cylinders of base d A 
.... 

and sides parallel to the velocity vector V . 

The volume of an elementary cylinder is dD = dAV dt 
n .... 

where V is the projected value of V on a perpendicular to dA . It 
n 

is deduced that ~~) dD = S.\ dAVndt in which A1 is the part of LJ. D • Al 
A which defines the lilnit of domain D

1
. 

Hence the momentum of fluid enclosed in D
1 

becomes: 

SSSD p V dD = dt SS A p V V n dA 
1 1 

This is given by a surface integral rather than a volume integral 

throughout the volume D
1 

. 

XIII-2. 4. 2 The momentum of fluid enclosed in domain D
3 

at time 

(t + dt) is Si\D p (V + 
8
8? dt) dD 

3 

..,. The first integral .\SS n/ V dD is the product of a finite 

number jvj and an infinitesimal number D
3 

while the second integral 

sss D p 
8af dt dD is a product of two infinitesimal numbers I ~7 dt I 

3 
and D

3 
. Hence this second integral may be neglected. 

A process of calculation similar to that just demonstrated 

in the above section shows that: 

- dt ('(' p V V dA Jj A n 
2 

where A
2 

is the part of A defining the limit of domain D
3 

. 

XIII-2. 4. 3 Now the difference of momentum between domains D
1 

and 

D 3 , at time (t + dt) and time t respectively, caused by the variation 

378 

• 



• 

of velocity with respect to space is: 

dt ('(' p V V dA - dt ('(' p V V dA 
jj A n jj A n 

2 1 
Dividing by the interval of time dt , the difference of 

momentum per unit time is SS A p V V n dS - SS A p V V n dA 
2 1 

Now since the discharge of momentum entering the domain is 

affected by a negative sign, while the discharge of momentum leaving 

the domain is affected by a positive sign, and A = A
1 

+ A
2

, then the 

previous difference becomes SS Ap V V n dA . The value p Q V encountered 

in elementary hydraulics may be recognized in this expression. 

XIII-2. 5 GENERAL FORMULA 

Finally the total change of momentum per unit time with 

respect to both time and space is equal to the sum of the external forces. 

Therefore: 

XIII-2. 6 DIFFICULTIES IN THE CASE OF UNSTEADY FLOW 

In the case of steady flow, the integral with respect to 

('('(' ap v 
volume D jjj D ----at" dD = 0 and the momentum theory becomes 

simply: 

As for external forces, only the boundary conditions for A 

appear in this equation since the momentum is given by a surface integral. 

Hence its application does not require a knowledge of the fine structure 

of flow within the domain D but only in the area A . 
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In the case of unsteady flow, the volume integral SSS D a~~ dD 

is different from zero and requires a knowledge of the flow patterns 

within D as a function of time and space. Thus the momentum theorem 

is difficult to apply to unsteady flow and as such, is less frequently used 

in practice. 

XIII-2. 7 THE CASE OF TURBULENT FLOW 
__. 

In the previous formulas, the notation V is the exact value 

of the velocity. The application of the momentum theorem to turbulent 

flow under this form is theoretically impossible because of the complexity 

of the flow pattern. However, as stated previously, only: the mean 
~ 

motion is studied in turbulent flow and V is replaced by its mean value 
~ ..... 

with respect to time, V , and a fluctuating value V' of mean value equal 

to zero. Then, by the same process as the one used in Chapter VII, 

~ s T sss D a~: dD dt = P ~t sss D ~ s (v + V? dt dD = sss D a~~ dD 

-+ av 
Thus, in the case of steady mean motion, V = constant; """"8[""" = 0 

and sss D aCtV dD = 0 de spite turbulence. In other words, the term 

expressing the variation of momentum with respect to time does not -change for turbulent motion and the real value V may be replaced by 
:::;; 

the mean value with respect to time, V , without any correction factor. 

XIII-2. 7.1 In the case of unidimensional turbulent flow, it is theoretically 

possible to introduce the correction factors by two methods. 

The first method, as has been done with the Reynolds 

equation, consists of considering the inertia forces caused by the 
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turbulent fluctuations (which are equivalent to the discharge of 

momentum) as external forces. In this process, external forces such 

as - SS Ap u' 
2

dA appear along with pressure forces. 

XIII-2. 7. 2 The second method, which is the most practical, considers 

the effect of turbulent fluctuations as shown in paragraphs XI-13 and 

XII-2 in the generalization of the Bernoulli equation for a stream tube. 

One may recall that the variations with respect to time appear as a 

function of T while variations in a cross section appear as a function 

.... ... - 1 rT 1 s.r -of x suchthat V = U(l+ O" + x) where U= T jo A jAVdAdT. 

Then, introducing the value U , the surface integral becomes 

1 rTs.r 2 -= Py j 
0 

jAUUn(l+ O" + x) dA = p(l+ ~ )QU 

where a = 3 O" 
2 + 3 X 

2 

It may be noted that it is the same correction factor as that 

obtained for the local inertia term and one-third of that obtained for the 

convective inertia term. This result is consistent since both discharges 

of momentum and the local inertia term appear as functions of the 

square of the velocity. 

XIII-3 PRACTICAL APPLICATION OF THE MOMENTUM THEOREM -

CASE OF A STREAM TUBE 

XIII-3.1 LIMITS 

The first step in the application of the momentum theorem consists 

of choosing the limits of the mass of fluid to which the momentum theorem 
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can be applied: These limits are chosen in a section where the boundary 

conditions are well known, i.e. , fixed boundaries or eros s sections 

where the motion may be considered as unidimensional. 

Since the momentum theorem is a vectorial equality, it is 

convenient to choose one or two axes of reference. Generally the main 

flow direction indicates one of the axes to be considered. 

Finally the momentum equality is written by projecting all 

the forces involved on these two axes of reference. 

In many cases of unidimensional flow, only the equalities of 

force in the direction of flow are of interest. 

XIII-3. 2 PRACTICAL EXPRESSION OF THE MOMENTUM FOR 

UNIDIMENSIONAL FLOW 

For a streamtube flow, as shown in Figure XIII-5, the terms 

of the momentum equation 

-= ~F e 

applied to a fluid mass within cross sections A
1 

and A 2 take the 

following forms: 

This is the variation of momentum with respect to space. Now if cross 

section A is constant, the flow is uniform and SSp V V n dA = 0 • 

The variation of momentum with respect to time is 

sss D 8~tV dD = p sss D ~? dA dL 
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If the cross section is constant and V the mean velocity in the cross 

section, 
('('(' av av 
jjj pat dD = p at AL 

D 
It is recalled that since this 

expression is a linear function of V , there is no correction factor 

because of turbulence. 

XIII-3. 3 EXTERNAL FORCES 

XIII-3. 3.1 Pressure Forces 

Pressure forces may be considered as consisting of two 

components: 

a. The sum of the forces caused by constant pressures Pz 

and p
1

, i.e., p
2

A
2

- p
1

A
1 

may be included or omitted. 

In this expression, atmospheric pressure 

b. Hydrostatic forces applied to the center of gravity of the 

cross sections. This is illustrated in Figure XIII-6. In the case of a 

free surface two-dimensional flow on a horizontal bottom: 

1:Fe = pg[h~z h12] 

This hydrostatic term is zero in the case of uniform flow and is often 

neglected in flow under pressure. 

At the limits of a streamtube where V is zero, the pressure 
n 

force is given by rsA pn dP dL where P is the wetted perimeter and 

n is a unit normal to iKe surface. If P is expressed as a function of L , 

this pressure force is J pn P(L) dL. This force is usually expressed along 

the axis in the mean direction of flow only, becoming: S p sin a P(L) dL 

where a is the angle of the boundary with the axis. See Figure XIII-7. 

In this case p could be given at any point by the Bernoulli 
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equation or by assumptions based on physical observations. If all the 

other terms are known, this becomes the only unknown in the equation 

and the momentum theorem provides a way of finding the value of this integral. 

XIII-3. 3. 2 Gravity Force 

The gravity force is given by pg SA dL which has a 

component pg SA dz in the direction of the mean flow. For a uniform 

flow this becomes +pg A ( z
2

- z
1

). This term is equal to zero for a 

horizontal flow. 

XIII-3. 3. 3 Friction Force 

The friction force is SS T dP dL where P again is the 

wetted perimeter. For a uniform flow this expression reduces to T PL. 

Frequently in the case of a short structure or short flow (e. g. hydraulic 

jump or sudden enlargement), this force is neglected. 

XIII-3. 3. 4 Specific Force 

Finally, dividing through all these terms by p g and 

equating forces yields: 
2 

(1 + ~2) v: A2 
P2 P 

--A +-1 
pg 2 pg 

( 
"'l) vl2 

1+- --
3 g 

l 
g 

1\1 av dA dL = JvJ at 

A dz + SS L T dP dL 

It is often convenient to group these terms as follows: 

= 

where a is neglected, 
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1 
g 

(' av A(L) dL + J L at 
(' p(L) 
j L pg 

('z2 
sinaP(L)dL + j_ Adz t 

zl 

The specific force in a cross section A is [v2 
+ ..E..} A . 

g pg 

Thus for a uniform flow, the above expression becomes: 

[
pl 
-+ 
pg = L av + 

g at 

since A
1 

= A
2 

=A and V 
1 

= V 
2 

. Note that the term 

rPL 
-p::-

rPL 
A 

can be 

written where Rh is the hydraulic radius. One can recognize 

that the above expression may also be obtained from the Bernoulli 

equation where V = U (average velocity) and the friction force F - Tp - _2_ - A - Rh 
(see Section XII-2. 6). 

XIII-4 EXAMPLES 

In order to illustrate previous considerati:ons and to provide 

a guide for further applications, some examples are given with an 

emphasis on all the necessary assumptions not usually given in elementary 

textbooks on hydraulics. 

XIII-4.1 HYDRAULIC JUMP ON A HORIZONTAL BOTTOM 

From observation it is common knowledge that the flow 

pattern in a hydraulic jump is extremely complicated. However, by 

considering the external forces only and change of momentum at the 

boundaries, one can study this complex phenomenon without dealing 

with the complicated fine structure of the flow. 

Firstly, the flow limits are chosen in a plane where the flow 

pattern is well known; i.e., far enough from the front of the hydraulic 
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jump for the mean flow to be parallel to the bottom (Figure XIII- 8). 

Secondly, two reference axes are chosen. One axis will 

obviously be chosen in the direction of flow OX . 

The external forces to be considered in the OX direction 

are: 

a. The pressure forces at the boundaries; i.e., on the 

vertical planes AB and CD , having a total sum in the OX direction 

different from zero. The pressure distribution is hydrostatic. 

b. The shearing stresses caused by friction on the boundaries, 

including the free surface, and on the planes BC and AD in a direction 

opposite to OX . In such a short structure, though, these shearing 

stresses are negligible. Hence, the external forces acting in the OX 

z 

1----\x 

FIGURE XIII-8 

HYDRAULIC JUMP- NOTATION 

• 

387 



direction are: 

LF 
e 

[

h 2 

= pg --+ 
An additional term S pu' 

2 
dz , caused by turbulent fluctua

tions and which increases the value of the pressure acting on AB and 

CD , should be considered; however, in this case it is neglected. 

Now the difference of momentum with respect to time is 

= pQilV = 

Equating this change of momentum with the external forces leads to: 

[~ pQ(V2-Vl) = pg <-
h/] 
-2-

which finally becomes, after some elementary transformations: 

= 

Choosing a second axis in the vertical direction will give an 

equality between the atmospheric pressure force acting on the free 

surface, the gravity force which is equal to the total weight of water in 

volume ABCD , and the external force acting vertically upwards on the 

bottom of the hydraulic jump. There is no change of momentum in this 

direction. 

XIII-4. 2 HYDRAULIC JUMP IN A TUNNEL 

Consider the case of a partially open gate in a tunnel sub-

mitted to a high upstream pressure as shown in Figure XIII-9. An air 

vent is often necessary to avoid cavitation effects. When conditions for 
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a hydraulic jump are satisfied, the water flow acts as an ejector and a 

quantity of air is sucked into the tunnel. Because of the head loss in the 

air vent, the pressure at the free surface is smaller than atmospheric 

pressure. Hence the external forces must take into account this 

difference in pressure. The simplest solution is obtained using the 

absolute value P = p + p of the pressure which gives: 

:~Fe = (pl~l + pg A~hl) (P2A2 + pg A(2) 

P 
2 

is greater than the atmospheric pressure because of the head loss 

in the downstream part of the tunnel. The above equation is based on 

similar assumptions as XIII-4.1. 
2 

Because of air-entrainment~ momentum 

in cross section (1) is p~ 
1 

Q Q + Qa 
p A 

2 
and in cross section (2) where 

the discharge 

Q + Qa 

of air at pressure P 2 ; pQ is the mass per unit 

time; and A is the velocity. 

The mass of air is neglected, but the air discharge has an 

influence only on the velocity of the water. 

XIII-4. 3 PARADOX OF BERGERON 

Consider a tank on wheels as in Figure XIII- 10. On one 

side the pressure distribution is hydrostatic, while on the other side 

the pressure head is transformed into velocity head. The difference 

could be obtained by calculating, successively, a flow net, the pressure 

distribution on the two sides, and the forces. However, the momentum 

theorem gives the total value of the force directly as: 

cient of contraction) 

F = pQV = pC A-v'lgh 
c 
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Because of this force and since other forces (such as gravity and atmos-

pheric pressure} have a horizontal component equal to zero, the tank 

has a tendency to move in the opposite direction of the jet. This is the 

principle of jet propulsion. 

Now suppose water is present outside the tank and also 

assume the tank is heavier than the buoyant force (Figure XIII-11). In 

this case the tank does not move. The force caused by the jet is equal 

to the force caused by the very complicated motion inside the tank. This 

may be considered as another application of Newton's Third Law --

action is equal and opposite to reaction -- and the momentum theorem 

must be applied to the total mass of water. This is what is known as 

the Paradox of Bergeron. 

The same result is obtained in the case shown by Figure XIII-12. 

The jet acts on the wall of the downstream tank. The tank does not move. 

It is well known that a sprinkler rotates or a rubber pipe 

moves due to a jet action. However, if a sprinkler or a rubber pipe is 

used in pumping water from a full tank, it does not move. This fact 

may be easily demonstrated by considering the head loss at the entrance. 

Finally, consider the two tanks as shown in Figure XIII-13 in which it 

is assumed that the holes have the same cross section. One of the holes 

is closed by means of a plane held in place by the jet from the left tank. 

The area of pressure ABCD equals the area A' B' C' B' or ABE+ 

FDC = E' B' C' F' . Considering the forces on the plate we obtain: 
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when 

i.e.' 

with C d = 0. 60 for an orifice, it is pas sible for z 
2 

to be 1. 2 z
1 

by 

the simple insertion of a plate. Shaping the hole in the left tank so that 

Cd-1.0, z 2 canbemadealmostequalto 2z
1

. If the jet returns 

th h 1800, roug z
2 

could be equal to 4 z 
1 

. 

All this may be physically explained by the consideration of 

external forces (AEB and DCF) transformed into momentum. 

XIII-5 DIFFICULTIES IN THE APPLICATION OF THE MOMENTUM 

THEOREM 

In spite of its simple appearance, the momentum theorem 

permits the analysis of complex motions. This leads one to think about 
' . 

the precautions that have to be taken in the application of this theorem. 

One difficulty in the application of the momentum theorem 

is in the choice of the boundary and the boundary conditions. It is im-

possible to calculate the external forces without having a rough idea of 

the flow pattern. This often requires experimentation or knowledge of 

similar previous experiments. Some examples to illustrate these 

considerations are given below. 

XIII-5.1 SUDDEN ENLARGEMENT 

The external for~es involved are the pressure forces on 

sections (1) and (2) in Figure XIII-14. It is generally assumed that the 

pressure p':' exerted by wall S in the flow is the same as the pressure 
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p 
1

'-' at the end 'of the smaller pipe. First of all, if the flow is laminar, 

the streamlines have such a curvature that this assumption is wrong. 

(See Figure XIII-15.} But it is known by experiment that when the Rey

nolds number is greater than a critical value, the flow enters the wider 

pipe in the form of a jet. This jet, often unstable, generates by friction 

some secondary currents in the corners. 

If the velocity is small enough for the convective inertia to 

be negligible, it is true that the pressure distribution at the cross section 

(l) is hydrostatic and this usual assumption is valid. In fact, the eddies 

caused by friction induce a centrifugal force which causes the pressure 

force to be slightly greater than the force calculated with the previous 

assumption. However, the assumption is quite valid for practical pur

poses. 

XIII-5. 2 HYDRAULIC JUMP CAUSED BY A SUDDEN DEEPENING 

This example illustrates a case where it is impossible to 

calculate external force without experiments. 

Suppose that a channel has a sudden deepening in order to 

fix the position of a hydraulic jump (Figure XIII-16}. At the exact plane 

where the front of the jump occurs, the external force exerted by the 

vertical wall changes as shown in the diagram. Only systematic 

experimentation will give the factors which influence this phenomenon, 

and only this experimentation will establish the corresponding theory. 

XIII-5. 3 HYDRAULIC JUMP ON A SLOPE 

The study of a hydraulic jump on a slope involves a body 
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force --the force of gravity-- which definitely influences the flow 

conditions (Figure XIII-17). The gravity force to be considered is the 

component of the total gravity force in the direction of the main flow due 

to the weight of water included between the two usual limits where the 

flow is parallel to the bottom. Hence this force pg Al sin a is a function 

of the length of the hydraulic jump l . This length could be roughly 

estimated by experimentation, but it is evident that it cannot be deter-

mined with great accuracy. However, the length of the hydraulic jump 

must satisfy the equation 

pQ(Vz- Vl) = pg rh~2 ~] + pg Al sin a 

XIII-5. 4 INTAKE 

Consider a free surface flow as shown in Figure XIII-18. 

The rise of the water level in part ABCD may theoretically be calculated by 

applying the momentum equation in the OX direction to the mass of 

water enclosed in EFBC . Thus: 

pQV = pg [(d+/d)2 ~2] 
vz vz 

which gives ~d =- and not - as it may be expected after a 
g 2g 

superficial analysis. 

However, the practical result is often closer to than 

This is not because the momentum theory is wrong, but because 

the boundary conditions are wrong. The velocity at section GD is not 
'~ 

perpendicular to the cross section and the momentum theorem should 

be applied to the mass BCDJHGEF in order to include the difference 
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in external forces applied at DH , where the level is higher, and FG , 

where the level is lower. Unfortunately~ these external forces cannot 

be estimated by theory. 

XIII-5.5 UNSTEADY FLOW- TRANSLATORY WAVE 

As an example of unsteady flow where the momentum theorem 

may be used, the case of a translatory wave will be analyzed (Figure 

XIII-19). It is assumed that the wave is traveling in still water and that 

the velocity V caused by the translatory wave is constant along a vertical 

plane. Letting the wave celerity be W, the mass of water changing its 

velocity from 0 to V in time dt is p(h +A h) Wdt. Hence the change 

of momentum per unit time is: 

('('(' opV d vol = p V W (h + L\h) 
JjJ vol.ilt 

The external forces are: 

(h + 6h)
2 

pg 2 pgh6h 

Equating these two expressions, one obtains pVW (h + 6h) = pgh<lh. 

On the other hand, because of the continuity, one may write V (h + C.h) 

= W C.h . Eliminating V gives W = ygh. A more exact theory in 

which the curvature of the paths is taken into account gives: 

+ h2 82h)]V2 W= 
[ ( 

3C.h 
gh l +z 11 3C.h ax2 

XIII-6 MOMENTUM VERSUS ENERGY 

(see Section XVII-6. 2) 

In this section, the field of application of the momentum 

theorem is analyzed and compared with the field of application of the 
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principle of conservation of energy. 

As has been seen in paragraph XII-1.1, the main difference 

in application of these two methods lies in knowing the connection of the 

internal forces with the phenomena to be studied. 

The momentum theorem is used to study an overall effect, 

whatever the complexity of the flow. The principle of conservation of 

energy is used to study phenomena linked to the internal motion and to 

the very fine structure of the flow pattern. 

It is easy to conceive that the second method will be more 

quickly limited in its scope when analyzing hydraulic problems. It has 

been seen that a number of assumptions, such as irrotationality, are 

necessary before this second method can be used. These limitations are 

linked with the difficulties of integration of the basic Navier-Stokes 

equations. 

A number of examples will now be used to illustrate the 

above points. 

XIII-6.1 IRROTATIONAL FLOW WITHOUT FRICTION 

The total thrust of a jet on a fixed or a movable plane, the 

force on the bucket of a spillway, or the total horizontal force exerted 

on a partially open gate in a tunnel, etc., may be calculated by the 

momentum theorem (Figure XIII-20). On the other hand, the exact 

• pressure distribution caused by the above conditions of flow may be 

calculated by the following method. 

The flow is assumed to be irrotational and flow net may be .. 
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drawn which gives the velocity distribution. The pressure distribution 

is given by the application of the Bernoulli equation expressing the 

conservation of energy. It is evident that the total thrust may also be 

deduced by this process of calculation, using an integration of pressure 

forces r p d A = T, and this could be compared to the result given by 

the momentum theorem. 

However, the result given by the momentum theorem, which 

is obtained without any assumptions, is more exact provided that the 

boundary conditions are well known. 

XIII-6. 2 UNIDIMENSIONAL ROTATIONAL FLOW 

The momentum theorem rna y be used to analyze a number 

of phenomena, such as a sudden head loss at a sudden enlargement or 

a hydraulic jump, for example, whatever the complexity of the flow. 

Combining the force-momentum equation with the energy-

work equation given the value of the head loss by calculating the difference 
y2 p 

in total heads: ..,..- + - + z. Both the force-momentum equation and 
"g w 

the energy-work equation are valid to study a diverging flow where the 

head loss may be neglected, but application of the energy-work equation 

to a sudden enlargement is wrong without the introduction of another 

term expressing the head loss, in spite of the identity of equations in 

their differential form. 

XIII-6. 3 VARIOUS APPLICATIONS 

To show the variety of possible applications of the momentum 

theorem, some examples are given below which may be analyzed by this 
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method: 

XIII-6. 4 

Total thrust exerted by a jet, by a propeller, 

by an ejector, with two identical fluids or two different 

fluids s.uch as air-water. 

Total force on an ice cover of a river, provided 

one is able to estimate from the velocity distribution 

curves, the force exerted by the bottom in a direction 

opposite to the flow. 

Total force exerted on a wing, or on a blade 

where the flow is separated from the boundary. The 

classical Joukovski wing theory gives the value of this 

force assuming the flow to be irrotational with circu

lation. There is no separation. 

MECHANICS OF MANIFOLD FLOW 

Mechanics of manifold flow is of particular interest as an 

illustration of the previous considerations on the fields of application 

of the Bernoulli and momentum equations. Consider a flow as shown by 

Figure XIII-21. If the motion is two-dimensional, a first method of 

analysis assumes the motion to be irrotational. In this manner it is 

possible to calculate the flow pattern by conformal mapping. But this 

method is far from strictly valid because of the friction forces. 

It is also possible to apply the energy equation to both the 

main conduit flow and to the flow in the lateral, if a term is included to 

express energy losses. But, it is impossible by theory to establish the 
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value of this term. One can assume that head loss for the lateral pipe 

is that of a bend, while for the main flow it is that of a sudden enlarge-

ment 
(V - Vc)2 

2g 
But systematic experimental results do not verify 

this assumption. 

A similar simplified approach consists of writing the momen-

tum equation for the flow at the junction, provided that a term is included 

for the intermediate momentum of the flow in the lateral at the junction, 

or the corresponding unbalanced external force component acting on the 

wall of the lateral. 

Both of these methods, due to lack of knowledge of one 

significant unknown, make direct application of the results impossible 

without recourse to experiment. 

XIII-6. 5 CONCLUSION 

For any problem where only the overall effect is of interest, 

the momentum theorem can best be applied because of its great simplicity 

due to the fact that the sum of the internal forces is considered to be 

zero. However, when using the momentum theorem, one must be very 

careful in the estimation of the external forces and boundary conditions. 

Often an experiment may be necessary to establish these unknowns. 

When more details about the flow characteristics are required, 

the system of differential equations giving the fine structure of the flow 

directly must be solved completely. But the validity of this solution is 

quickly limited because of the number of assumptions which must be 

introduced in order to simplify the system of equations to be solved. 

406 

., ., 

• 



" 

XIII- l Derive the momentum equation by integrating the Eulerian 

equation to a finite volume. Determine the correcting terms due to tur-

bulence by integrating the Reynolds equation to a finite volume. 

XIII-2 Consider the flow through a pipe of radius R ended by two 
0 

circular disks of radius R and separated by a small distance h as 

shown by the following figure. Calculate the total force exerted by the 

flow on the lower disk by assuming that the flow between the two disks 

is radial and that the total discharge is P. 

Answer: 

[;z 
0 

l 

- 4h2 
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XIII- 3 Consider a two-dimensional flow such as shown on the following 

figure. Draw the corresponding flow net and determine the pressure 

distribution from A to B (assuming no separation at C and D), and 

calculate the total force on AB by integrating the pressure distribution 

as a function of the fluid discharge Q. Calculate the same force by 

application of the momentum theorem. Explain the discrepancy between 

these two results. 

t----2A 
c D 

A 

Answer: 

The total force by momentum is 2 p Q V and it is only p Q V 

by integration of pressure. The difference is due to the force acting at 

A and B. 

XIII-4 Demonstrate the following relationship for a hydraulic jump 

in a rectangular horizontal channel: 
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where yl and Yz , 
I vl I tively, F = 
I 

1 .J g yl 

are the upstream and downstream water depths respec-

is the Froude number of the upstream flow where 

v 1 is the average flow velocity. 

XIII-5 Consider the flow as shown on the following figure. 

1) Draw two flow nets at two different scales to analyze the 

pressure distribution at the entrance of the gallery and 

against the gate. 

2) Calculate the integral of the horizontal and vertical 

components of the pressure forces acting against the 

gate. Compare the result of this total horizontal sum 

with the result obtained by applying the .momentum theorem. 

3) Is there any risk of cavitation? 

au au av av 
4) Give the values of u and v and ax' By' ax' ay along 

OY for x = 0 at the entrance of the gallery from A to B • 

.. 
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XIII-6 Consider the three following two-dimensional flows as illus-

trated by the following figures. The first flow (a) is a sudden enlargement; 

the second flow (b) is a gently diverging flow; and the third one (c) is a 

hydraulic jump. In these three cases it is assumed that the two end 
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water depths h
1 

and h 2 are identical and that the fluid discharge per 

unit of width q is the same. 

By application of the momentum theorem and the Bernoulli 

equation to these three cases, determine the value of the external forces 

and the head losses (the shearing stress at the wall will be neglected). 

Answer: 

a) 

h2 

hi . j .. 
mJlllll/lll//lllll!/lll/ll~/ll/ll?!l!llll/ll/. 

b) 

c l 

Energy: 
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XIII-7 

Momentum: 

First case: 

2 

[
vl + P1 
g p g 

(h can sometimes be neglected by comparison ,m_ th l) pg 

Second case: 

2 

F =f p(x) sinadx 
pg 

l 

L'IH (head loss) is negligible so the value of the integral F 

is obtained (h can sometimes be neglected by comparison 

with ppg) 

Third case: 

J2..._ = 
pg 

The sum of external forces due to atmospheric pressure 

equals zero, so all the terms J2..._ disappear. 
pg 

Find the value of the contraction coefficient in the case of 

the circular orifice (called the Borda mouthpiece) as shown on the following 

412 



II 

figure. The contraction coefficient is defined by the ratio of the smallest 

cross section of the jet to the cross section of the orifice. 

Answer: 

XIII-8 

and since 

p Q V = p g zA (external force) 

pQV = p [2 gz) AC, 
1 

C=-z 

Consider a weir such as shown on the following figure. Deter-

mine the expression for z as a function of the head above the weir edge 

H. It will be assumed that the weir is aerated, i.e., the atmospheric 

pressure is applied on the free surface. The discharge per unit length 

is q = 0. 5 H.JZ g H and V will be taken equal to 0. 1 ~. What is 

the error which is made in neglecting the angle a of the falling water 
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with the vertical? 

Answer: 

T 
Zw z 

2 
z 

pgz- p q [V- f(a)] 

f (a) "=! >J 2 g ( z + H - h) sin a 
w 

h ---v 

://///J 

Inserting q = f(H), the function z = f(H) is obtained. 

XIII-9 A jet hits a plane perpendicularly. The discharge of the jet 

is Q = 2 ft
3
/sec and the particle velocity is V = 20 ft/sec. The plane is 

moving at a velocity U (U < V) in the direction of the jet. Calculate 1) 

the total force exerted by the jet on the plane as a function of the velocity 

U; 2) the power of the jet in H. P.; 3) the power transmitted by the jet 

to the plane as a function of the velocity U; 4) the efficiency defined as 

a ratio of these two powers. 
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Do the same calculations assuming that the plane is replaced 

by a bucket as shown on the following figure. 

' 

Answer: 

F = p Q(V - U), Power of the jet: 

Transmitted power: p Q(V - U) U. 

In the case of the bucket, F = 2 p Q (V - U) 

XIII-10 Consider the case of a hydraulic jump created by an abrupt 

drop h of the bottom of a channel. Demonstrate the two following relation-

ships between the upstream water depth y
1 

and the downstream water 

depth y2 . 

v2 
l y2/ Y1 [ [Y2 h 

2
] l -- = 2 l - y2/y1 

l - -- -] 
g Yr Yr Yr 

or 

v2 
l y2/ Yr [[~ + 1]2 _ [y2 J2] l = 2 - y 2/ y1 g Yr l Yr Yr 

.. 
depending upon the assumption for the value of the pres sure distribution 
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on the vertical wall forming the abrupt drop. 

Answer: 

The pressure at the bottom of the vertical wall is p g (y1 +h) 

or p g Yz depending upon the exact location of the jump with respect to 

the bottom drop. 

XIII-11 Demonstrate that the rate of energy dissipation per unit of 

time by a hydraulic jump is 

dE = 
dt 

pgQ 

and demonstrate that the efficiency of a hydraulic jump, defined as the 

ratio of the specific energy after and before the jump, is 

where 

F = 

Subscripts 1 and 2 refer to upstream and downstream values respec-

tively. 
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XIII-12 Consider a horizontal convergent between two cross sections 

A
1 

= 2 ft
2 

and A
3 

= 1 ft
2

. At section A
1

, the pressure p
1 

= 12 psi and 

2 v
1 

=6ft/sec. The shearing force exerted by water is T = p fV where 

f = 0. 05 and V is the average velocity as a function of the area of the 

cross section. Determine the head loss and the total force exerted by 

the convergent on its anchor as a function of the length of the convergent. 

Determine the total force exerted on the anchor as a function 

of the length of convergent in the case where the convergent is bended by 

0 0 
45 and 90 . 

Now, neglecting friction force and taking a length of convergent 

of 10 feet, determine the total force on the anchor in the straight and 

curved convergent in the case where v
1 

is time dependent such that 

v
1 

ft/sec = 6 sin ~rr t and T = 20 sec. 

XIII-13 Consider the spillway defined by the following figure. The 

coefficient of discharge C, defined by A = C h 'i 2 g h, is a function of 

h/h such as 
n 

h 
0.2 h 

n 

c 0. 394 

0.4 

0.425 

0.8 1 1.2 1.4 

0.470 0.490 0.504 0.518 

It will be assumed that h = 8 feet and h = 12 feet . 
n 

417 

1.6 2 

0.532 0.552 



h 

l) Calculate the discharge per linear foot of spillway. 

2) Draw the flow net by successive approximation. 

3) Determine the pressure distribution from the velocity 

field and establish whether there is any risk of cavitation. 

4) This spillway is ended by a ski-jump (bucket) of 70 foot 

radius as shown on the following figure. Calculate the 

pressure distribution on the bucket (without drawing any 

flow net) and integrate it in order to obtain the total force 

on the bucket. 

5) Determine the total force on the bucket by application of 

the momentum theorem. Compare the results of 4 and 5. 

6) Calculate the distance D between the foot of the dam and 

the location of impact of the jet. 
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200ft 

J~~~ 
5()11 

_j,_. ~~~~~~~-

XIII-14 Establish, by choosing a number of simplifying assumptions 

and by making use of the momentum theorem and the Bernoulli equations, 

the set of equations giving the distribution of discharges through mani-

folds with 2 holes, 3 holes, 4 holes, ... n holes of same cross section 

and subjected to the same pressure. The head losses through the nor-

mal section of the main pipe will be neglected. 

" 

419 



CHAPTER XIV 

BOUNDARY LAYER, FLOW IN PIPES AND DRAG 

XIV-1 GENERAL CONCEPT OF BOUNDARY LAYER 

XIV-1.1 DEFINITION 

XIV -1. J.. 1 As a viscous flow passes a solid boundary such as a flat-

plate or a streamlined body, the influence of viscosity on the flow field 

is usually confined in a thin layer near the boundary. Outside this 

layer, the effect of the viscosity is vanishingly small, the fluid behaves 

like a perfect fluid. This physical picture suggests that the entire flow 

field can be divided into two domains, and each domain can be treated 

separately for the purpose of simplifying the mathematical analysis 

(see Figure XIV-1). 

The first domain is called boundary layer, which is a thin 

layer right in the neighborhood of the boundary. In this domain the flow 

velocity is zero at the wall and increases rapidly to the velocity corre-

sponding to the free stream velocity. Because of this large velocity 

gradient, the friction force which is related to the velocity gradient in 

the normal direction is important. 

In the second domain, the influence of viscosity is small. 

The friction forces can be neglected in comparison to the inertia forces. 

Hence the viscous terms in the Navier-Stokes equations may be 
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STREAM 

LIMIT OF BOUNDARY LAYER 

. •' 

F'IGURE XIV-1 

TWO FLOW DOMAINS 
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neglected. The fluid can be assumed to be nonviscous and can be 

considered as irrotational (see Section II-4. 4). 

The pressure in the boundary layer as will be shown later 

is approximately equal to the pressure at the limit of the free stream. 

XIV -1. l. 2 The larger the value of the Reynolds number, the thinner 

is the boundary layer. 

At a very high Reynolds number, the average flow motion with 

respect to time is consequently very close to that of a perfect fluid. This 

point has already been mentioned in Section VIII-1. 2 and is further illus-

strated in Figure XIV-2. 

FIGURE XIV-2 

LAMINAR FLOW 

TURBULENT FLOW 
WITH LAMINAR SUBLAYER 

TURBULENT FLOW 

PERFECT FLUID 

INFLUENCE OF THE REYNOLDS NUMBER ON THE VELOCITY 

DISTRIBUTION AND THE THICKNESS OF THE BOUNDARY LAYER 
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XIV -1. 2 THICKNESS OF BOUNDARY LAYER 

XIV-1.2.1 The definition of thickness of the boundary layer is to a 

certain extent arbitrary because the transition of velocity from zero to 

the ambient velocity takes place asymptotically. Since the velocity in-

creases very rapidly from the wall to the free stream velocity, it is then 

possible to specify the thickness of the boundary layer beyond which 

the effects of the wall friction are rather small. Such a choice is made 

by defining the thickness of the boundary layer 0 to be the distance 

from the wall at which the velocity differs from the free stream velocity 

by l percent. 

Further quantities describing the extent of the boundary 

layer thickness such as displacement thickness a•:<, and momentum thickness 

9 are given in the following. The significance of these definitions will 

be seen in the later sections. 

XIV -l. 2. 2 Displacement Thickness for a Two-dimensional Boundary Layer 

Because of the existence of the friction forces, a certain 

amount of flow along the boundary is retarded within the boundary 

layer. The amount of retarded flow is 

J (U 
0 

- u) dy 

y=O 

The displacement thickness o':' is the value by which the wall will have 

to be shifted in order to give the same discharge as a frictionless fluid. 
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Consequently, ·li~' is defined by the equality (see Figure XIV-3): 

i. e. , 

0'~U0 = J (U
0

- u) dy 

y=O 

00 

y 

u(x,y} 

FIGURE XIV-3 

E 

1 
u 

0 

u) dy 

DISPLACEMENT THICKNESS (AREA ABC EQUALS AREA CDE) 

XIV- 1. 2. 3 Momentum Thic;.;ne s s 

Because of the existence of the boundary layer, the momen-

tum flux is reduced in the boundary layer. As a measure of retardation 

of momentum flux, the momentum thickness is then defined by the thickness 
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of a layer having the velocity U , and of momentum flux equal to the 
0 

loss of momentum flux due to presence of the boundary layer. The 

reduction of the momentum flux in the boundary layer is 

pu (U - u) dy 
0 

The momentum thickness is then defined by 

i.e.' 

XIV-2 

XIV-2. l 

"' 
pU~ 9 = pf u (U 

0 
- u) dy 

0 

l e = u2 
0 

J u (U - u) dy ~ 
y=O o 

LAMINAR BOUNDARY LAYER 

l 

u2 
0 

(j 

S u (U
0 

- u) dy 
0 

STEADY UNIFORM FLOW OVER A FLAT PLATE 

XIV-2. l. l Derivation of Equations 

The Navier-Stokes equations in the case of a two-dimensional 

steady motion are 

au au 
u- + v- = 

ax ay 

2 2 
11 (o u + o u) 

2 2 .. ax ay 
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u ov + 
ox 

ov 
voy 

= _ I_ 0 p~' t !) (o2
v t OV ) 

p oy ~ 2 ~ 2 
oX uy 

and the continuity equation 

ou + ov = 0 
ox oy 

As mentioned in the previous section, the velocity varies 

rapidly along the y axis, which has a value of zero at the wall and 

reaches the free stream velocity at a distance of the order of the thick-

ness of the boundary layer 6, while on the other hand the velocity varies 

very slowly along the plate (see Figure XIV-4}. Therefore, all deriv-

atives in the y direction must be much larger than the derivatives in the 

x direction (see Sections IV-5. 2. 4 and V-4. 3}. 

u. 

y u. 

FIGURE XIV-4 

SCHEMATIC DRAWING OF THE BOUNDARY LAYER 
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Consequently, in the first equation, 

a2
u 

lJ --2 may be neglected. 
ox 

and the term 

Furthermore, the velocity v across the boundary layer is of much 

smaller value than the velocity u along the boundary layer. As a result, 

the terms which contain the velocity v in the second equation 

are of much smaller value than the terms in the first equation 

and therefore they may be neglected. Finally, the second equation 

becomes 

This states that the pressure is hydrostatic along a perpendicular to the 

plate and p':' depends only on x, which can be determined from the nature 

of the flow in the free stream. Since p':' is a function of x only, one 

has the equality 

and the equations of motion become 

dp'~ 
- dx 

2 
+ 0 u 

IJ--
oy2 
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which is often called the boundary layer equation. In addition to the 

above equation, the boundary conditions 

u = v = 0 

u = u 
0 

at 

when 

y = 0 

and the continuity equation determine the flow field near the flat 

plate. 

In the particular case where U is constant, i.e., in the 
0 

case of a steady uniform flow over a flat plate with zero incidences, 

as a consequence of the Bernoulli equation applied in the second 

domain, one has 

op~' -
ox 0 

at the limit of the boundary layer. 

XIV-2. 1. 2 Establishment of Dimensionless Parameters 

As shown in Figure XIV-4 the momentum flux per unit width 

through OM is equal to pU!O. The momentum flux through AB is smaller 

2 
although it remains linearly related to pU 6. Hence, the difference of momen

o 
2 

tum is also linearly related to pU 6. On the other hand, the total 
0 

friction force per unit width between the sections OM and AB is 
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>J.U x 
linearly related to >J.~ x, and this last term is linearly related to f 

ay 
Since the difference of momentum flux between sections 

OM and AB is due to the friction force along OB, one may equate the 

difference of momentum flux with the friction force. Consequently one 

has 

or 

(It is pointed out that this equation would not be valid in the case of 

an arbitrary pressure distribution along the plate.) It is now 

assumed that the velocity profiles at all distances x from the leading 

edge are similar, which means that the velocity profile u(y) for 

varying distances x can be made identical by choosing the proper 

scale factors for u(y) and y. The free stream velocity U and the 
0 

boundary layer thickness o are these scale factors. Hence, one has 

the similarity relationship 

Assuming: 

u 
u 

0 
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one has also 

u 
{J; (71) u = 

0 

where 

71 = y~ 

XIV -2. l. 3 Blasius Equation 

Let us now consider the case of flow over a flat plate 
0 ,, 

where 0r:;" = 0 and introduce the stream function 1/J(x, y) such that 

u = ~ oy, v = - ~ ox 

Then the boundary layer equation becomes 

D. = 1.J 3 
oy 

which is a third order nonlinear differential equation. 

1/J is equal to Jyu dy. Substituting u by U
0 

cl>(71), andy= 

71-vfi.._, one obtains 
0 

0 

1/J =i/ U 1.Jxf(71) 
0 
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The boundary layer equation presented above can now be transformed 

into an ordinary differential equation as follows: 

u = ~ = u f'(77) 
oy 0 

v = ~ = * ox 
.!. {TJf' - f) 
2 

Clu ~~ u-J5 f'' ( 77) = = 
Cly a/ 0 !IX 

ou h u 77 
0 f" ( 77) 

ox 
= =-zx--oxoy 

D_ u 
= u ( ____£_) f"' ( 77) 

3 0 !IX 
oy 

Substituting then into the boundary layer equation, one obtains Blasius 1 

equation 

2f"'+ff" = 0 

and the boundary conditions 

f = f' = 0 at 77 = 0 

f I = 1 at 
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Hence all the coefficients other than the zeros can be 

expressed as a function of A
2

, while the constant A
2 

can be determined 

from the boundary condition: 

u = u 
0 

i. e. , when 71 - "', f' ( 71) = 1 through nume rica! calculations. Once A
2 

is obtained, £(71) can be calculated. The result of f(7J) together with 

£ 1 (71) and f"(71) are plotted in Figure XIV-5. This gives the 

Blasius solution of the laminar boundary-layer equations. 

FIGURE XIV- 5 

f. 

f I 

f II 

SOLUTION OF THE BLASIUS EQUATION 
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XIV- 2. 1. 4 Solution of the Blasius Equation 

The general solution of the Blasius equation cannot be 

given in a closed form. However, tbe solution can be obtained through 

power series expansion. The power series expansion near 7) = 0 is 

assumed to be of the form of 

f ( 7)) + ... 

where A are constants. From the boundary conditions 
n 

f = f
1 = 0 at 7) = 0 

one obtains A
0 

= A
1 

= 0. 

Substituting the power series witb A
0 

= A
1 

= 0 into the 

Blasius equation, one obtains 

This must be equal to zero for any value of 7), which can be verified only 

if all the coefficients of each term are equal to zero. Consequently one has 
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XIV-2. l. 5 Boundary Layer Thickness 

The boundary layer thickness for the steady uniform flow 

over a flat plate as defined in Section XIV-1. 2. 1, (that is the distance 

from the wall at which u = 0. 99 U
0

) can be obtained from Figure XIV-5, 

where 7), 5. 0, 

i.e. ' 
li 

7) = 

-vw: "" 5 

Hence the boundary layer thickness o becomes 

/i X 
,5.o~ 

1J 

XIV -2. 1. 6 Shear Stress and Resistance Coefficient 

From the numerical calculation in Section XIV- 2. 1. 4, or 

the graph presented in Figure XIV-4, one obtains: 

f" (0} = o. 332 

Therefore the shear stress at the wall is 

T {x) 
0 = ~ (~~) y=O 

= u""' ru;: f"(O) = ~ 0 v ~ 
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where R 
X 

U X 
0 = is the Reynolds number based on the distance, x, 
II 

from the leading edge of the plate. 

The resistance force on one side of the plate over length t 

per unit width is equal to 

and the resistance coefficient Cf is 

D l. 328 = 

u t 
where Rt = ~ is the Reynolds number based on the length of the 

plate. 

XIV-2. 2 MOMENTUM INTEGRAL EQUATION FOR BOUNDARY 

LAYER 

XIV-2. 2. 1 The Method of Solution 

XIV-2. 2.1. 1 As demonstrated in the previous most simple example, 

i.e., the laminar boundary layer on a semi-infinite flat plate with zero 

incidence, the calculation is cumbersome and time consuming. It is de-

sirable to find some approximate method to evaluate the necessary 

quantities required for the practical use. In particular the case where 

0 ·" 
:: can no longer be considered as zero, such as in the case of flow 

past a wedge, can be analyzed by the momentum integral equation, 
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Such a method which was developed by von Karman is based on the 

momentum principle. The so-called von Karman's momentum 

integral formula is derived in the following. 

Considering in two-dimensional steady flow, an element of 

volume ABCD as shown in Figure XIV-6, the momentum integral method 

consists of applying the momentum theorem to an element of fluid ABCD 

along the boundary, i.e. , the variation of momentum flux between the 

boundary AD, BC, and CD, is equal to the applied forces. The applied 

forces consist of the pressure force acting on the boundaries 

and the shear stress on the wall. Each of these will be 

considered separately in the following. Then the equality will give the 

momentum integral equation. Of course, in the case where the flow is 

unsteady, the additional term resulting from unsteady flow also has to be 

considered in the equation (see Section XIII-2. 6). 

XIV- 2. 2. l. 2 The discharge through AD is 

li I u dy 
0 

and the discharge through CB is 

li I u dy 
0 

x=x1+dx 

li 
= I u dy 

0 
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The net out-flow over the vertical control surface is equal to the 

difference, i.e., 

This amount of flow must be supplied through the top boundary for the 

sake of continuity. 

XIV-2. 2. l. 3 Similarly the x-momentum flux through AD is 

I
Ii 2 

p u dy 
0 

and through BC is 

I
Ii 2 

p u dy 
0 

x=x 
1 

I
0

2 d[I0
2 J = p 

0 
u dy + p dx 

0 
u dy dx 

x=x
1
tdx 

The net x-momentum out-flow through vertical control surface is equal 

to the difference 

On the other hand, since the velocity at the limit of the boundary layer 

is U the x-momentum in-flow over the top is equal to the mass flow pU 
0 0 
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times the fluid discharge through the control surface. This fluid dis-

charge has been found in the previous section to be 

Therefore, the x-momentum in-flow over the top boundary DC is 

pU 
0 
~x [ ( u dy J dx 

One, therefore obtains the total variation of x-momentum flux through 

ABCD, which is 

pU d [ Jli u dy]dx- p ddx [JOB u2 dy] dx 
o dx 

0 

XIV-2. 2. 1. 4 The pressure force acting on the limit of the volume 

ABCD in the OX direction are now considered. 

The pressure force on AD is pli, and on CB is (p+ ~~ dx) 

( li + ~~ dx) since the variation of boundary layer thickness with distance 

do 
is small, -o:;c dx may be neglected. B . . h dp d ut it 1s now cons1dered t at dx x 

may not be small. 

The pressure force on DC acting in the OX direction is also 

neglecte"d for the same reason: ~~ is small. 

Finally the net pressure force remains: 
dp 

- li dx dx. 

This last term may also be expressed in terms of the velocity U 
0 

as follows . 
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From the Bernoulli equation applied to the irrotational flow 

outside the boundary layer, one has 

dp = 
dx 

- p u 
0 

dU 
0 

dx 

Hence the net pressure force is: 

15 dp dx 
dx 

dU 
= pU 6--0 

o dx 
dx 

XIV-2. 2. l. 5 Now that all the terms have been established, it is 

possible to write the momentum integral equation for the volume 

ABCD. One obtains the momentum integral by equating the X- momentum 

flux calculated in the previous ~ections and the net pressure force to the 

shear force on the boundary, that is, 

dU 
+ pU 15 -d 

0 
dx 

0 X 

Dividing the above equation by dx and rearranging the terms, one 

obtains 

d [ J/5 J dU I 6 
To = dx 0 pu(Uo- u) dy + dxo Op (Uo- u) dy 

440 



• 

--·--~----

Intro'ducing the displacement thickness, o':' and the momentum 

thickness e, the the momentum integral can be written 

T 
0 = _i_ (u2 e) 
p dx o 

dU 
+ O'~ U --0 

o dx 

Since no assumption is being made on the nature of the flow, this 

method is applicable to laminar as well as turbul.ent flows. However, 

in turbulent flow, the velocity should be considered to be mean value. 

XIV- 2. 2. 2 _Examples for the Use of Momentum Integral 

For the purpose of comparison, the previous problem, 

steady uniform laminar flow over a flat plate, is chosen for this 

evaluation. In this case U is constant. Therefore, the momentum 
0 

integral becomes 

T 
0 

pu2 
0 

= 

First, one assumes a velocity profile, say 

u(y) 

where a
0

, a
1

, a
2 

are constants which can be determined from boundary 

conditions, that is, 
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u= 0 at y = 0 implies a = 0 
0 

U at y = 6 implies 2 
u= a 1 6 + a

2
o 

0 

dU =>' O 
dy 

at y = 6 implies a 1 + 2a
2
o 

Solving the equations, one obtains 

Therefore, the velocity profile is 

and one can find the momentum thickness a to be 

and 

a = t 
0 

u 
u 

T 
0 

p 
ou = 11-oy 

0 

= 
y=O 

211U 
0 

() 

= 

= 0 

Substituting into momentum integral equation, one has 

6 do = 1s11 
dx u

o 
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Integrating and using the boundary condition x = 0, ll = 0 one obtains 

0 = 5.5 « = 5. 5x 

~ 

and the normalized shear stress is equal to 

au 
ay 

0 

2U 
0 

-----o- = 
0.366 

...fR: 
X 

Both the boundary layer thickness and normalized shear stress are 

close to the exact value obtained in Sections XIV-2.1.5 and XIV-2.1.6. 

XIV-2.3 UNIFORM UNSTEADY FLOW OVER AN INFINITE FLAT PLATE 

XIV-2. 3. 1 _The Governing Equation of Motion 

Because the plate is of infinite length, the derivatives 

with respect to x should be zero. That is, 

au 
ox = 0 

From the continuity equation 

it follows that ~; = 0. Hence v is identical to zero because it is 

zero at the boundary. Furthermore, the pressure p'' is constant 
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everywhere, because of the infinite fluid field. Finally, the Navier-

Stokes equation becomes 

It is seen that this equation is 

exact solutions can be found. 

linear, and ~onsequently a number of 

If the fluid is\moving at a speed U (t) 
0 

and the plate is fixed, the boundary conditions are 

u = 0 

u = u (t) 
0 

at y = 0 

when 

If the fluid at infinity is fixed and the plate moving at velocity U (t), 
0 

the boundary conditions are 

u = u (t) 
0 

at y = 0 

u = 0 when 

XIV-2. 3. 2 Impulsive Motion of an Infinite Flat Plate 

The case of an impulsive motion of an infinite flat plate 

is given as an example. In that case u = 0 for all y when t ,; 0, and 

u = U at y = 0 when t > 0, and u = 0 when y - "'· 
0 

The partial differential equation can be changed into an 

ordinary differential equation by introducing the dimensionless variable 
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\' 

'11 = 

"" 

y 

21/t 

After performing the required differentiations and substituting into 

the equation, one obtains 

du 
+ '11 d '11 = 0 

Integrating with respect to '/), one gets 

I
y/-vp 

u(y, t) = cl e -'I) 
12 

d'IJ + c2 

0 

where c
2 

can be determined by the boundary conditions: u = U 
0

, 

for 'IJ = 0 which gives c
2 

= U 
0

• The constant c
1 

is determined from 

·the initial condition u = 0 at t = 0 ('/) = y/"'\[iVt = oo). Substituting into 

the above equation, one has 

The above integral has a value of -..r:;;J2' hence c
1 

= - '"\(2R U 
0

• 

Substituting c
1

, c
2 

into the equation, one obtains the 

velocity distribution 
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or 

u = U erfc 
0 

y 

The velocity distribution is pre sen ted in Figure XIV -7. 

It is clear that the velocity profile for different times are similar; 

they can be reduced to one curve by using the dimensionless variables 

u/U and 
0 

XIV-2. 4 

1) = y . 
-..{2Vt 

BOUNDARY LAYERS OF AN OSCILLATING FLAT PLATE 

As an infinite flat plate oscillates parallel to itself, the 

governing equation of motion is the same as the impulsive motion of an 

infinite flat plate, that is, 

au 
at 

while the boundary conditions may be given by 

u(O,t) = u cos kt 
0 

u(oo, t) = 0 

for the plate oscillates periodically. 
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The solution of this equation is 

u(y,t) = U
0 

exp (--Jf;y) cos {kt --Jii;y) 

The velocity profile, u(y, t) has the form of damped harmonic oscillation, 

with an amplitude of U
0 

exp (-~ y). The amplitude decreases exponen

tially from the plate. The velocity profiles for several instants of time 

are plotted in Figure XIV-8. 

A similar solution applies in the case where the fluid is 

moving at a velocity 

u = u cos kt 
0 

and the plate is fixed. Such s elution is of particular interest for 

studying the motion in the boundary layer of a periodic gravity wave 

and the wave damping by bottom friction. 

XIV-3 TURBULENT BOUNDARY LAYER 

XiV-3. 1 GENERAL DESCRIPTION 

For a laminar boundary layer, it has been seen 

that its thickness increases with the distance x from the edge 

of the plate. As this boundary layer thickness increases, the flow has a 

tendency to become turbulent. The criteria of the transition from 

laminar to turbulent is usually based on the Reynolds number U x/v, 
0 
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in which U is the free stream velocity, x is the distance from the 
0 

edge of the plate and lJ is the kinematic viscosity. 

The location x or the value of Reynolds number at which the 

boundary layer becomes turbulent depends somewhat on the turbulence 

level of the free stream. 5 6 
It ranges from 10 to 10 The shear stress 

acting on the boundary is much larger in the turbulent boundary layer than 

in the laminar boundary layer, therefore the determination of the location 

of this transition is not only of theoretical interest but can also have some 

practical uses. 

After transition, the main part of the flow in the boundary 

layer is turbulent. However, immediately adjacent to the wall, the 

turhuient fiuctuations are suppressed by the presence of the wall. The 

flow field in this region can be divided into three domains: the laminar 

sublayer, the turbulent boundary layer; and the free stream (see Figure 

XIV-9). If the boundary is rough, laminar sublayer may be destroyed 

by the presence of the roughness elements. A detailed discussion of 

this is given in Section XIV-4. 3. 

a) Laminar Sublayer: The velocity distribution is 

determined by the viscous force, that is, 

du 
T = PIJdy 

450 

I 
I 
' 

.. 



I 
1. 

y 

u ( y) 

T 
y 

<J) SMOOTH WALL 

y 

u ( y) 

y 

b) ROUGH WALL 

FIGURE XIV- 9 

FREE STREAM 

TURBULENT BOUNDARY 

LAVER 

I 
TRANSITION 

FREE STREAM 

TURBULENT BOUNDARY 

LAVER 

(LAMINAR SUBLAYER MAY 

EXIST PROVIDED 

TURBULENT VELOCITY DISTRIBUTIONS 

NEAR THE WALL 

451 



Because this layer is very thin, it is reasonable to assume that T is 

constant within this layer and equal to the shear stress at the wall T • 
0 

After integration, the equation becomes 

T 
u = 0 y_ 

p II 

and defining 

=-vi 
one finally obtains 

u = 

u,,_ is called shear velocity . . ,. 

The name "laminar sublayer" does not mean the flow in 

this region is entirely laminar. Strong eddies generated in the turbulent 

flow often break through this thin layer and form turbulent spots in the 

sublayer. Therefore, to avoid confusion, the name "viscous sublayer" 

is sometimes used. 

b) Turbulent Boundary Layer: In this domain, the effect of 

turbulent fluctuation creates a large turbulent shear stress, while the 

effect of viscous shear is very small. Therefore, the velocity distri-

bution is determined by the effect of turbulent shear stress which results 

in a logarithmic velocity distribution, as discussed in Section VIII-3. 5. 
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c) Free Stream Flow: The effect of the boundary shear 

stress in this domain is small. Therefore the flow field can be deter-

mined by considering that the flow is nonviscous. 

( However, there are no sharp boundaries between each region, 

I 
and the concept of each domain is therefore to some extent qualitative. 

A schematic drawing of the three domains of flow and the flow pattern 

before the formation of the turbulent boundary layer is given in Figure 

XIV-10. 

XIV-3. 2 RESISTANCE AND BOUNDARY LAYER GROWTH ON A 

FLAT PLATE 

Owing to the complicated flow conditions in the turbulent 

boundary layer, the exact solution of the equation of motion is not 

possible. One mathematical method available at present consists of 

determining the characteristics of the turbulent boundary layers by 

application of the momentum integral method which has beendescribed 

in Section XIV-2. 2. 

The purpose of the use of momentum integral method in 

the turbulent boundary layer is to evaluate the variations with distance 

of the thickness of this boundary layer and the boundary shear stress. 

The use of this integral method involves the assumptions of a velocity 

profile at one location and similar profiles along the boundary. In the 

turbulent boundary layer, it is rather difficult to assume a velocity profile 

with sufficient accuracy because of the complicated flow field. Therefore, 
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some experimental results have to be used as a base in order to get 

a good prediction of the variations of thickness of the boundary layer 

and the resistance with distance. Based on the experimental results 

the velocity profile can be represented by 

l/7 
u 

= 8. 74 (~y) 

where u,, = ·I}T 
0 

I p is the shear velocity. Since the velocity at y = o 

is equal to U , then 
0 

or T = 
0 

u 
0 

2 ( v \1/4 
0. 0225 pU 

0 
t:J6) . 

0 

immediately get, 

u 

u 
0 

l/7 
= (Y) 

0 

From the first two equations, one can 

From the definition of the momentum thickness, one has successively 
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Substituting momentum thickness 9 and the wall shear stress T into 
0 

the momentum integral equation 

one obtains 

T 
0 

7 p 0 

d9 
= 

dx 

(UZJ6 '\1/4 --
0. 0225 \ 1 

0 

7 dc'i 
72 dx 

(U = constant) 
0 

which is the differential equation for c'i. Integrating this equation from 

initial value c'i = c'i at x = x where boundary layer starts to become turbulent, 
0 0 

to a given point x measured from the leading edge of the plate yields: 

ZJ 
0.29 u 

0 

(x- x ) 
0 

If one assumes that the boundary layer becomes turbulent 

at the edge of the plate, that is the initial value above can be replaced 

by c'i = 0 at x = 0, the above equation gives directly: 

c5 = 
-1/5 

(~0) 4/5 
X 0.37 

which indicates that the boundary layer thickness increases with the 

4/5 
power x , whereas in the laminar boundary layer, the thickness 

. . h l /2 Increases w1t x . 
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The resistance force per unit width of length t is 

t 
R=J 7: dx 

0 0 
= p u 2 e(t) 

0 

u -l/5 

= o. 036 u2 
(-

0
-) t 415 

p o II 

and the resistance coefficient cf is: 

R 
u t -1/5 

= 0.072 (+) 

In the range of Reynolds number 5 x l 0
5 < R < l 0 

7
, the last equation 

e 

gives very good agreement with experimental results. 

The value of resistance coefficient for the turbulent boundary 

layer as well as laminar boundary layer are plotted in Figure XIV -11. 
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XIV-4 FT .OW IN PIPES 

XIV-4. l STEADY LAMINAR FLOW IN PIPES 

Laminar flow in pipes scarely occurs in practice. However, 

a rather full discussion is given because it permits a simple and rational 

analysis which is of some help in the understanding of the turbulent flow 

where conditions are so complicated that a complete theoretical treat-

ment is still not possible. 

The flow conditions can be determined directly from the 

application of the Navier-Stokes equation. However, it is much simpler 

to derive the equation of motion directly from the consideration between 

the shear stress and the pressure drop. As shown in Figure XIV-12, 

one could easily obtain the following equation by consideration of force 

equilibrium on the cylindrical element. 

2 
~p7Tr = 2'1TrTt 

This assumes that p'~ is a constant across a pipe section, a result 

which can be derived from the Navier-Stokes equation. For the 

laminar flow, the shear stress is simply, 

T =>I<~ 
dr 

Substituting into the above equation, one obtains 

du rdr 
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FLUID ELEMENT UNDER FORCE EQUILIBRIUM 

After integration, the velocity profile becomes 

u = t..p 
2-tp, 

2 
r 
T + c 

The constant c can be determined from the boundary condition 

u = 0 at 

This leads to the velocity distribution in the pipe 

u= 
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which has the form of a symmetrical paraboloid. By integration, 

the average velocity V can be found as follows: 

v = Q 

7Tr2 
0 

= 1 
-2 
7Tr 

0 

r 
0 J u27Tr dr = 

0 

Rearranging the above equation, one obtains 

~p = 64 
pg 

where D = 2r 
0 

2 
~pr 

0 

Comparing the last equation with Darcy- Weisbach equation, obtained by 

dimensional analysis namely: 

~H = ~p = 
pg 

fi_ 
D 

where ~His the head loss, f is the friction factor, one obtains immediately 

the friction factor f for the laminar flow in a circular pipe 

XIV-4.2 TURBULENT VELOCITY DISTRIBUTIONS AND 

RESISTANCE LAW FOR SMOOTH PIPES 

XIV-4. 2. 1 Velocity Distributions 

As the flow in the pipe becomes turbulent, the analytical 

determination of the velocity distribution is not possible. As in the 
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case of turbulent boundary layer, one has to determine the velocity 

profile based on logical assumptions and experimental verifications. 

One of the best known assumptions in regard to the velocity distri-

bution near the wall is so called the law of the wall which is based on the 

assumption that the velocity u at a distance y from the wall depends 

on the tangential stress 'f and on the viscosity ~ and density p. 
0 

Therefore, one may write 

F(T ,u,y,p,,p) = 0 
0 

(It is understood that u means the average velocity with respect to 

time and should actually be written u (see Section VII-1. 5). The bar 

will be omitted in the following sections for the sake of simplicity. ) 

Based on the dimensional analysis, one obtains the dimensionless form, 

u = 

similar to the case of flow over a flat plate (see XIV -3. 2). The functional 

relationship in the laminar sublayer has been derived in Section XIV -3. 1 to be 

u u~~Y 
= II 

where u~, = >jT0/p, while outside the laminar sublayer and a transitional 

layer the turbulent stress dominates and the velocity profile follows 
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logarithmic law which has been derived in Section VIII~3. 5 to be 

u l 
= k ln y + cl 

In writing the dimensionless form, the velocity distribution reads 

u 

where 

1 ui.~ 
-- ln- + 

k !I 

The value of c
2 

and the range of validity of these two equations 

which describes the velocity distribution in laminar sublayer and the 

turbulence flow have to be determined experimentally. 

Large amounts of experimental work for measuring the 

velocity distribution in circular pipes have been performed. Typical 

velocity profiles are shown on Figure XIV -13a. The results are also 

presented in terms of the dimensionless variables~ 
u~~Y 

and-- in 
!I u},{ 

u,:,y 
Figure XIV -14. It indicates that at low values of-- , 

!I 

u~:~Y 
(- < 5) the 

!I 

velocity follows the linear relationship 

u = 
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u~:~Y 
For values of > 30 the experimental curve follows the logarithmic 

lJ 

law which can be approximated by the equation 

u,:,Y 
However, in the range ----v- between 5 to 30 where both turbulent and 

viscous effects are of equal importance the velocity profile deviates 

from both of the above equations. Mathematical analysis fails to give 

correct prediction. This region is usually called buffer region or 

transition region. 

XIV-4. 2. 2 Resistance Law for Smooth Pipes 

Usually the thickness of the laminar sublayer and the layer of 

transition is very small in comparison with the size of the pipe. There-

fore, in computing the average velocity, one could just use the log a-

rithmic velocity distribution without introducing any significant error. 

The average velocity may then be obtained by substituting 

yu~:: 
= 5. 75 log

10 
---z;J + 5. 5 

into the following equation: 

u = 
1 

-2-
r 1r 

0 I
ro 

27r ru dr = 

465 

r 
2u~:~ I 0 

1 (5. 75log
10 -2- r 

r 
0 

u ... (r. -.,. 0 r) 

lJ 
+5.5)dr 



After integration, one obtains 

On the other hand, it has been seen that the Darcy- Weisbach equation 

gives the value of the head loss .O.H as function of the friction coefficient 

f and the average velocity U as follows: 

~H 

where t and D are the length and diameter of the pipe respectively. 

7TD2 
Also, pg~H -:r- is the difference of pressure forces acting on 

two cross sections apart by a distance -I'. This force is balanced by 

the shearing force T 7TD-I'.. Equating these two forces yields: 
0 

~H = 

Inserting u... = 1/ T I p and eliminating ~ H by considering this above ,,, 0 

equality with the Darcy- W eisbach equation yields: 

u 
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·-

and since . 

UD 
v 

The above equation can be further written 

I 1,/£ = 2. 04 log 10 R -yT- 0. 91 

UD 

j_ ---~ 

where R = B d'f · h · ~ r v . y mo 1 ymg t e constant shghtly to agree with the results 

I ....,:_~tained from experiments, that is to change the constants in the above equations 

~- 04 and 0. 91 to 2. 0 and 0. 8 respectively, one has 

= 2.0 log
10 

Riff- 0.8 

/ 
which is the Prandtl's universal law of friction for smooth pipes. 

XIV-4. 3 EFFECT OF ROUGHNESS 

XIV-4. 3. I Velocity Distribution on the Turbulent Rough Wall 

The effect of roughness element on the flow depends on the 

thickness of the laminar sublayer. If the laminar sublayer is so thick 

that it covers the roughness, then the roughness has no effect. The 

surface then can be considered to be hydrodynamically smooth. If the 

size of the roughness elements is much bigger in comparison to the 
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laminar sublayer, the effect of viscosity becomes small and no lange'< 

enters explicitly into the picture. The surface is then considered to be 

completely rough. In this case the shear stress depends only on the 

roughness, the specific density p, and the velocity u at some distance 

y from the wall. Some typical velocity profiles obtained in rough pipes 

are presented in Figure XIV-13b. Following the same procedure for the 

flow in smooth pipes, one could establish a dimensionless functional 

relationship for the closely packed uniform sand roughness ele1nents in 

completely rough regime 

u 

u .•. 
•e 

where k is the sand size. (If the sand is not closely packed or non
s 

uniform, one should also take account for the concentration and distri-

bution and shape of the roughness elements.) In the case that the wall is 
k u~ ... 

not completely rough, then an additional dimensionless parameter s!J •r 

should also be included. Therefore, the general function should read 

u k~u':') 

This general functional relationship has been determined by experiments 

and can be approximated by the equation 

u = 5.75log 10 ~ 
s 

+B 
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where B depends on the 

'--- ._ __ . 

k u_, 
S •e 

"shear Reynolds number, 11 -ll-. 

of B obtained by experiments is shown in Figure XIV -15. 
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As indicated in this figure, the value of B characterizes three regimes: 

a} Hydraulically smooth regime previously considered in 

Section XIV -4. 2 

In this regime the size of roughness is so small that it 

is covered by laminar sublayer. 
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b) Transition regime: 

Some of the roughness elements extend outside the 

laminar sublayer and contribute some resistance 

through form drag. 

c) Completely rough regime: 

k
8 
u~:~ 

> 70 
ll 

All the roughness elements are exposed outside the 

la'?inar sublayer or one may say that the laminar 

sublayer has been destroyed completely by the rough-

ness elements. The turbulent action extends all the 

way to the rough wall. Further increase of shear and the 

Reynolds number does not bring any change of flow 

patterns. Therefore B remains independent of shear 

Reynolds number. 

XIV -4. 3. 2 Resistance Formula for Rough Wall 

The resistance coefficient in the completely rough regime 

can be evaluated the same way as in the case of smooth pipe. The final 

form of the resistance equation reads 
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1 = 2. 0 log
10 

r 
0 

k 
s 

+ 1. 74 

Experiments were performed first by Nikuradse. He used closely packed 

sand grain roughness elements and obtained the resistance diagram 

shown in Figure XIV- 16. 

The velocity distribution and resistance formula discussed 

are based on the closely packed sand grain roughness used by Nikuradse. 

In this case k is the actual sand size. However, if a different type 
s 

of sand is used or sand particles are not packed closely, the resistance 

offered to the flow will be different. Therefore, sand size alone is not 

enough to describe the velocity distribution and resistance. 
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XIV-5 DRAG ON IMMERSED BODIES 

XIV-5. 1 DRAG ON A BODY IN STEADY FLOW 

XIV-5. 1.1 The Case of a Perfect Fluid: The Paradox of D'Alembert 

It has been seen that the total force exerted by a current on 

a cylinder is zero. (See Section XI-4. 3. 1. 2.} In the case of a perfect 

fluid this result is general, in such a way that the total force exerted 

on a body by a perfect fluid without circulation of velocity is always 

nil. It is the paradox of D' Alembert. 

In the case where a circulation is introduced to the fluid (see 

Section XI-4. 2 and in particular Section XI-4. 2. 6} a force perpendicular 

to the incident velocit;y is exerted on the body. It can be demonstrated 

that this force is proportional to the velocity of the fluid V and the strength 

of the circulation. It is this force that causes the lift of an aerofoil. 

The problem now under study is that of a real fluid in which 

case a boundary layer develops along the body, and induces a drag. 

This drag is due to the shearing force acting on the body and to the 

wake. This leads us to discuss the problem of boundary layer separation. 

XIV-5.1. 2 Boundary Layer Separation 

The flow field near a flat plate in parallel flow and at zero 

incidence is quite simple because the pressure in the entire flow field 

remains ·constant. In the case of flow about a blunt body such as a 

cylinder, the pressure along the surface of the body, which is impressed 

on the boundary from the external flow, is not constant. As shown in 
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Figure XIV -17 the fluid particles are accelerated from A to B and 

decelerated fro.m B to C. Hence the pressure decreases from A to 

B and then increases from B to C, as can be seen by application of 

'· I the Bernoulli equation. Since the fluid is viscous, a certain amount 

of kinetic energy is lost by the friction within the thin boundary layer 

as the fluid particles move along the boundary. The remaining energy 

may be too small to overcome the increasing pressure toward the 

point C. As a result of this, the fluid particles being influenced by the 

external pressure may move in the reverse direction and cause 

flow separation behind the body at point S. The flow field behind the 

separation is very irregular and is characterized by large turbulent 

eddies. This region is usually called turbulent wake although the wake 

may also be laminar when the Reynolds number is small (smaller than 

40 in the case of a cylinder}. 

Because of the existence of the wake, the flow field changes 

radically as compared with that in frictionless flow. The main flow 

which separates from either side of the boundary does not meet right 

behind the body. It leaves the pressure within the wake to remain close 

to its value at the separation point, which is always less than the 

pressure at the forward stagnation point. Therefore, a large net force 

will act on the body resulting from the pressure difference. This 

force is called form drag. 

" 
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XIV- 5. 1. 3 Drag Cpefficient of a Sphere 

In principle, the total drag exerted on a sphere moving 

with constant velocity in the infinite flow field is the sum of the 

friction drag (or shear drag) and the form drag. If the velocity is low 

enough (R < 1), the inertia terms in the Navier-Stokes equations may 

be neglected. The drag can be obtained analytically and is given by 

Stokes' law 

F = 37T p 11 VD 

where V is the relative velocity of the body with respect to the water 

and D the diameter of the sphere. The drag coefficient CD which is 

defined from the equation: 

is then equal to 24/R, where A is the cross sectional area of the sphere, 

R is the Reynolds number VD/7/. 

As the Reynolds number R increases, the flow separates 

from the surface of the sphere, beginning at the rear stagnation point, 

where the adverse pressure gradient is the largest. As the flow 

separates from the boundary, the form drag, which is a function of the 

area of separation and the square of velocity, becomes important. The 

drag coefficient CD will deviate from the line CD = 24/R, and start 

to level off. Figure XIV-18 indicates the variation of the drag coefficient 

CD with Reynolds number R. 
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3 
As the Reynolds number reaches 2 • 10 , the drag 

coefficient becomes almost constant, However, in the range of Reynolds 

5 5 number 2· 10 to 3 • 10 , the drag coefficient is suddenly reduced. The 

reason for this lies in the transition of boundary layer from laminar to 

turbulent. This transition brings a violent mixing in the boundary layer. 

As a result the fluid particles near the boundary gain additional kinetic 

energy which enables them to better withstand the adverse pressure 

gradient and move the separation point somewhat downstream as illustrated 

in Figure XIV-19. This results in a sudden decreasing of the drag co-

5 
efficient near the Reynolds number 3 x 10 as shown in Figure XIV-18. 

Since the transition that occurs depends on the roughness of the sphere, 

and also slightly on the turbulence level in the free stream, the drag 

coefficient near this critical region is not a unique function of Reynolds 

number. 

XIV-5.1.4 Drag on a Cylinder and the Karma:'n Vortex Street 

As shown in Figure XIV-20, the relationship between drag 

coefficient and the Reynolds number for a circular cylinder with axis 

normal to the direction of motion, in general, is similar to that for 

a sphere. However, rather peculiar phenomena which are not 

ordinarily found in the flow around a sphere can be observed in flow 

around a cylinder. In the range of Reynolds number between 40 and 

5, 000, one could see a regular pattern of vortices which move alter-

nately clockwise and counterclockwise downstream as shown in Figure 

XIV- 21. This is known as the K,;:rm~n vortex street, The vortex 
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FIGURE XIV- 21 
' , 

KARMAN VORTEX STREET 

480 

--, 
--- h 

__l_ 

I 
I 

~r 



' '' 

··-- --· [. _______ _ 

street moves with a velocity V which is somewhat smaller than the 
e 

free stream velocity U . Von Ka:rma:n found that the vortex street is 
0 

unstable except at the spacing h/ l = 0. 281 and that the drag experienced 

by the cylinder depends on the width of the vortices h and on the velocity 

ratio V /U : e o 

2 [ ve 
F = p U 

0 
h 2. 83 U 

0 

Since the vortex developed behind the cylinder is unsymmet-

rical, a time-dependent circulation of velocity is induced around the cylinder. 

The cylinder will experience a side push which continually reverses its 

direction. Therefore the cylinder may tend to oscillate from one side to 

the other, particularly if its natural frequency of oscillation is in reso

nance with the frequency of the vortex shedding. 

The shedding frequencies kin the Karman vortex street 

behind a circular cylinder have been measured. Those measurements 

indicate that the dimensionless frequency known at the Strouhal number 

s = kD 
II 

depends uniquely on the Reynolds number. An experimental curve which 

can be used to determine the frequency of the vortex shedding is given in 

Figure XIV-22. From this curve, one could determine the shedding 

frequency which is useful information in practical design. 
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FIGURE XIV- 22 

THE RELATIONSHIP BETWEEN THE STROUHAL NUMBER AND 

THE REYNOLDS NUMBER 
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XIV-5. 2 DRAG DUE TO UNSTEADY MOTION: THE ADDED MASS 

CONCEPT 

XIV-5. 2. l The concept of added mass, or virtual mass, or induced 

mass, is of particular importance in the study of the forces acting on a 

body accelerating or decelerating in still water, or on a fixed body sub-

jected to an unsteady current. 

It is recalled that under steady state conditions the total force 

acting on a fixed body by a current without circulation is nil in the case 

of a perfect fluid. It is the paradox of D'Alembert. In the case of a real 

fluid, it has been seen that the force is a complex function of the Reynolds 

number. 
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Under unsteady conditions, another force has to be added, 

whether the fluid is perfect or real. The value of this force is now 

going to be analyzed. 

XIV-5, 2. 2 When a body of mass M moves in still water at a speed U, 

it has a kinetic energy (1/2) M u 2
• This body automatically induces a 

fluid motion around it which tends to zero when the distance from the 

body tends to infinity. The exact law of decay depends upon the shape 

of the body. However, far from the body it can be said that the fluid 

particle velocity V(x, y, z, t) decreases as 1/R 
3 

in the case of a three

dimensional flow and 1/R 
2 

in the case of a two-dimensional flow; R 

being the distance of the considered fluid particle from the center of 

the body. 

The total kinetic energy of the fluid surrounding the body 

is then 

"' 

IItm 
1 2 
zPV (x,y,z,t) da 

where lim is the limit of the body and da an elementary volume (or 

area in the case of a two-dimensional motion). 

The total kinetic energy of the system can then be written: 
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The quantity 

"' 2 
M' = P JJl. (6) dcr 

hm 

is the added mass. It is the mass of fluid which, moving at speed U, 

will have the same kinetic energy as the total mass of fluid. W is the 

work which is required to give the body velocity U, or it is the work 

which would be required to stop it. It is seen that this work also in

cludes the work required to move the fluid around it: (l/2) M'u2
. 

Once this work is produced, the body will continue to travel in a 

perfect fluid at a constant velocity U. 

-3 -2 
XIV-5. 2. 3 It is pointed out that since V decreases with R (orR 

in the two dimensional case}, (V/U} 2 varies with distance as R-
6 

(or 

4 3 2 
R- } while the integral of dcr varies as R (orR }. Consequently, 

the integral for M' has a finite value. 

It is seen also that in the general case M 1 is a function 

of the absolute value of U and consequently of the Reynolds number 

UD/v and other empirical parameters characterizing the flow (such 

as UT /D for periodic motion where D is a typical dimension of the 

body}. Consequently, M' will also be in general a function of time. 

However, in the case of a perfect fluid, V(x, y, z, t)/U is independent 

of U but depends upon the flow pattern only. If one refers 

V to a coordinate system moving at velocity U this ratio is also inde-

pendent of time. Hence the integral of the coefficient V(x, y, z,} /U is 
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independent of the value of U and the time as well. In a word, 

M 1 is a constant associated to the body and the specific mass of the 

fluid only. 

XIV- 5. 2. 4 Let us now consider the total force to move the body. It 

is equal to the sum of the inertia of this body itself and the inertia of 

the fluid surrounding it, i.e., 

_ .... 

F = M dU 
dt 

which can still be written as 

where 

_, 
F = 

Ml = 

(M + Ml) dU 
dl: 

It is not evident a priori that the two definitions for M 1 are identical. 

As a matter of fact the integral I I IV dcr may diverge as the distance 

from the body tends to infinity. Hence, in the case of moving body the 

force F 1 = M 1 dU I dt should be determined from the force exerted by 

the fluid on the body or vice versa, i.e., 

s 
F

1 =II pcos 9ds 
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where p is the pressure around the body, cos e is the angle of the 

perpendicular to ds with the main direction of the motion and s the 

area of the body (see Figure XIV-23). Given V (or cp), p can be 

determined by application of the Bernouilli equation. In general, 

the integral of p v2 
/2 being zero (paradox of D'Alembert), the 

integral of p orf)/ot only is significant, so that finally: 

M' = 
- Jfp~ cos e ds 

dU 
dt 

Of course, the equality force-momentum can also be 

obtained by differentiating the equality work-energy as follows: 

gives 

d 
d t (W) 

F dL 
d t 

= ~[.!.(MtM')u2 ] 
d t 2 

= U (M t M') dU 
d t 

Since dL/dt = U, the equality force-momentum is obtained. Still, 

this operation is done by assuming M' constant and dF/dt = 0. 

Actually, a more rigorous demonstration will not require this lilnita-

tion. 
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As a conclusion, for all practical purposes the added 

mass is determined by calculating the integral 

M' = P IJJ (6 )2 dcr 

or in the case of an irrotational flow 

M' = 
IJP~ cos 8 ds 

dU 
cit 

Then this value of M 1 will be used for determining the force 

M' dU 
dt 

The shortcomings of these simple demonstrations will not be discus.sed 

in this book. 

XIV-5. 2. 5 The case of a moving circular cylinder of radius R is given here 

as an example. The velocity potential for a cylinder moving through 

a fluid at rest is given by superimposing upon the steady state pattern 

of a flow around a cylinder, a uniform velocity U (see Section XI-4. 3.1. 2), 

i.e.' 

q; = - U ( r + ~ 2) cos 8 + U r cos 9 

It is seen that this operation nullifies the uniform flow component and 

the potential function is that of a doublet: 
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cp = 
R2 

u --cos 9 
r 

The fluid velocity at any point has a magnitude given by 

which gives: 

V(r,9,t) 
R2 

= z U(t) 
r 

where U(t) is the velocity of the body. The total kinetic energy of the 

fluid per unit length of the cylinder is then successively 

J27T J"' 1 R 4u2 
T = Pz 4 r dr d9 

0 r=R r 

dr 
3 
r 

It is seen that the added mass isM' = p 7T R
2

, i.e., the mass of a 

cylinder of radius R having the same density as the fluid. It is seen 

that the total force to move the body is then, 

F = (M + M') dU 
d t 
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2 dU 
F = (pb + p) 7r R dt 

where pb is the density of the body. 

It can be verified that F 1 = M 1 ~~is the total force exerted by the 

fluid on the body as the sum of all the pressure forces in the direction 

of the motion: 

27r 
F

1 = J P cos e R dll 
0 

The pressure distribution around a moving cylinder in the 

case of an unsteady motion is given by 

- E = acp + .!_ v2 + f ( t) 
p d t 2 

i.e. , 

* = R ~~ cos e +I u 2 
[ 1 - 4 sin

2 e J 

Since the integral of the quadratic term is zero, the total force acting 

on the cylinder is 

F l J211 
2 dU 2 = pR di cos e dll 

0 
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i.e. ' 

M' 2 = p 1T R 

XIV-5. 2. 6 Let us now consider the case of a fixed body subjected to 

an unsteady current. The total force exerted by water on the body is 

still 

s 
F = I I p cos e ds 

which in the case of an irrotational motion without circulation of 

velocity is identical to 

II p ~cos e ds 

This integral is twice the value of the same integral in the case of a 

moving body in a still fluid, and consequently 

F = 2M' dU 
dT 

It is interesting to mention that in the first case of a moving body in 

still water the same force is found provided M = M 1
, i.e. , the body 

has the same density as the fluid. 
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XIV•5, 2, 7 The case of a fixed circular cylinder subjected to an unsteady 

fluid flow is given here as an example. 

The potential function for the motion is then 

<D = - U(t) [ r + :r;_
2

] cos 8 

and 

ow dU 
Pat = -p2R dt cos 8 

r=R 

It is seen that the pressure component due to local inertia is in this 

case twice the value of the pressure component in the case of a moving 

cylinder. 

Inserting this value in the previous integral yields: 

2 dU 
F = 2 p 1r R dT = 2M' dU 

dT 

XIV-5. 2. 8 In the case of a real fluid, this inertial force still exists 

but due to viscosity, separation, and wake, a superimposed quadratic 

force also exists. The following empirical formula is often proposed: 
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where A is the cross section of the body perpendicular to the flow and 

Vol. is the volume of the body. (A= 2R in the case of a cylinder) CD 

is the drag coefficient, and CM the inertial coefficient. It is seen by 

comparison with the previous result that CM = 2 in the case of a cylinder. 

As a matter of fact, both CM and CD are not constants but complex 

unknown functions of the reduced frequency D/vT, the Reynolds num-

ber U D/ v , and are time dependent. 

a)VELOCITY 
PRESSURE 

c) TOTAL PRESSURE 

b) ACCELERATION PRESSURE 

FIGURE XIV -23 

AN EXAMPLE OF DISTRIBUTION OF PRESSURE FORCE 

ON A MOVING BODY IN STILL WATER 
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XIV-1 The dissipation energy thickness 6""~ of a boundary layer 

is defined by the equation: 

00 

= p f u [ u! -u2
] d y 

0 

where the right hand term is the flux of dissipated energy by friction. 

Calculate the value of 6"', 8, and 6"'"' as functions of 6 in the cases 

where 

1) u = u Y.. for y< 6 and u = u for y ~ 6 
0 6 0 

2) u = u [ t + (tl 2l for y < 6 and u=U for y2. 6 
0 0 

3) u = U
0 

tanh t 

Answer: 

6 6 2 2 
6~~ = 2' 3' 26- 6tn (e + 1) + tn ; 

8 
6 26 

6 [ tn cosh 1 +tanh 1 - 1] = 6' 15' 

6'~:-!e 
6 22 6 

[(e 
2 -1 )2 - 1 J = 4' 105 

6
' 2 

- e 

XIV-2 Obtain the transverse velocity component v for the laminar 

I 

I~ 
boundary layer along a plate. 

I 
I <:! 
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Answer: 

Since 1Jr = "'v u f ( "1) ' 
X 0 fi "1 = y 

X 

v = aw - ax 
= 1 j v uo r a f( "1) - fj 

'l x "1 a "1 

XIV-3 Determine the coefficients A of the Blasius Theory up to 
n 

All as a function of A 2 . Demonstrate that only A 3n+2 are different 

from zero and establish a reference formula for A 3n+2 as a function of 

A 2 . Present the expression of f('l]) as a power series as a function of 

A 2 and determine the value of A
2 

(it is found that A
2 

= 0. 332). Deter

mine the value of f( 1]), f 1 ( "1), f" ( "1) at y = 0. 

Answer: 

XIV-4 

A = 0, 
0 

A
6 

= 0, A = 
7 0 ' 

1 375 4 
All = - 8 TIT A2' 

A = - 1~ Ai, 
q 

A
9 

= 0, 

1 2 
= - 'l A2 ' 

AlO = 0 ' 

An+l C 
( l)n 2 n 

A3n+2 = - 'l (3n+2)~ 

The thickness of the laminar boundary layer on a semi-flat 

plate can be evaulated through the von Karman momentum integral formula 
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) 
i 

0 

by assuming a proper velocity profile. If the velocity profile is assumed 

to be a polynomial 

Answer: 

XIV-5 

1) Give the proper boundary conditions and use these boundary 

conditions to determine the five constants. 

2) Calculate the shear stress along the pl:'-te. 

3) Obtain the thickness of boundary layer by use of von 

' ' . Karman's momentum 1ntegral formula. 

y = 0' 

y = 5' 

u = 0' 

u=U 
0' 

= 0' 

2 
8 u- 0 -:---2" -
By 

8u _ 
8 y - 0' 

u 
0 a =-

4 li4 

pv-Bul 
8 y y=O 

= 
2p v U 

0 

li 

2 
8 u- 0 -:---2" -
By 

Consider the steady boundary layer on a convergent channel 

with flat walls. The boundary layer equations along the wall parallel to 
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the x-axis are 

ap = 0 
ay 

2 
--lap+ au -pax v;;z 

The free stream velocity is given in the form 

u(x) = 
u 

0 

X 

Introducing the similarity transformation 

as well as the stream function 

1Jr (x, y) = - .fVU f( TJ) 
0 

1) Find the ordinary differential equation for the stream 

function and the boundary conditions. 

2) Obtain the velocity distribution. 
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Answer: 

XIV-6 

f"' - f' 
2 + 1 = 0 

Multiplying this equation by £11 and integrating, 

i.e. , 

Finally 

d £' = ( f' - l) J 23 (£• + 2) 
dT) 

'l + >./2 [tanh-
1 -1 {2] 

- tanh '1/'3 ..) 2 + £' 

,f3 

f' = ~ = 3 tanh
2 

( Jz + 1. 146) - 2 

Establish the momentum integral equation for unsteady 

boundary layer. 

Answer: 

From the continuity and momentum equations, one has: 

au 
at 

2 
+~ ex 

Outside the boundary u-. U and 
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XIV-7 

y 

Inserting v = -L ~ ~ d y, and rearranging 
0 

0 0 0 

~i(u 
8t 0 

- u) dy + 8
8
xf [u(U-u) dy] + 88 ~ J (U- u) dy = T: 

0 0 

Finally 

Determine the frictional force on an oscillating plane covered 

by a layer of fluid of thickness h. The frequency of oscillation is k and 

the fluid has kinematic viscosity v. 

Answer: 

XIV-8 

8u 
8t 

u = u 
0 

cos k (h - y) cos k t 
cos kh 

F = f! 
8

ul = f! kU tanh kh cos kt 
8 y x=O o 

A fixed amount of discharge Q flows uniformly down a semi-

infinite plate started at x = 0. The fluid has viscosity f! and density p 

and it accelerates with the gravitational acceleration g as shown on the 

following figure. The free surface is assumed to be of constant pres sure. 
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The fluid in contact with the plate forms a boundary layer. The thickness 

of the boundary layer increases until it reaches the free surface as shown 

on the following figure'. 

X :Q 

X 

\ u.=$x 

\ 
\ 
\ 

y = Y• 

PO 

p = p
0 

= CONSTANT 

The flow will continue to accelerate and the fluid layer will become 

thinner until it reaches an asymptotic value. 

1) Derive the momentum integral equation before the boundary 
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Answer: 

layer reaches the free surface, 

2) Assume a parabolic velocity profile 

u 
u 

0 

Determine the constants a
0

, a
1

, a 2 by use of appro

priate boundary conditions. Substitute the determined 

velocity profile into the momentum integral equation and 

derive a differential equation for 6 (x). 

3) Try a solution of the form 6 = i3 xn. Determine the values 

of i3 and n from the integral equation. 

4) Determine the distance x at which the boundary layer 
0 

reaches the free stream. 

5) Determine the thickness of the boundary layer 6 at the 
0 

location where the boundary layer reaches the free stream. 

6) Derive the momentum integral equation for the flow regime 

x>x 
0 

7) Using the velocity profile derived in question (2), derive 

the differential equation of 6 (x) for x > x . 
0 

8) Obtain the relationship between the distance x and the 

layer thickness. 

9) Obtain the layer thickness 63 when x approaches 

infinity. 

6 

1) d: s u2 dy 
0 

6 

Uo ddxf u dy = 
0 
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i 
:> 

l 

2) a = 0, a - 2 0 1 - • 

(U = ,rzgx_) 
0 

1/2 

3~(~) 3) f3 = 

4) = ( 3 Q )4/3 
xo 2 .J2g f3 

5) y 
0 

= f3 ( 3 Q )1/3 
2 .J2g f3 

1i 

6) ddxf u2 dy = 
0 

_ v au(o) +go 
ay 

7) d 1i = 5 g ( 3 v Q 1i 3] 
dx "6Q"I -g-

8) 5 g (x-x) = 1 w 0 6 oe,2 [( 6~'- 1i )
2 '~2 ~' 2 )] 0 1i +6 6+6 

tn M 1i ( *2 ~' 2 
- 1i +66 +6 

0 0 

tan 
[ 

-1 tan 
2 1i + 6'~ J -1 0 

where 0* = 

= (3 gv Q )1/3 9) 63 

o*.J3 

( 
3 vg Q)1/3 
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XIV-9 

pipes 

XIV-10 

Derive the resistance equation for turbulent flow in rough 

1 
.[£ 

= 2 log
10 

r 
0 

k 
s 

+ 1. 74 

The potential function for a two-dimensional flow around a 

cylinder of radius R is 

R2) 
cj> = u (r + r cos e 

where U is the velocity at infinity. Give the pressure distribution 

around the cylinder in the case where 

1) u = constant = U 
0 

2) U = U sin kt 
0 

Determine the total force acting on a cylinder by integration of the 

pressure. 

XIV -11 Calculate the added mass for a sphere, taking into account 

the fact that the velocity potential for a sphere of radius R moving at 

velocity U in a special coordinate system (r, 8, 1Jr) in a still fluid is: 
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UR 3 
<1> · = cos e 
~ 

Answer: 

M' 
__ 12rrirrJ,oo v! + v~ 2 p r sin e dr de d1jr 

o o R u 2 

XIV-12 The horizontal velocity component due to a linear periodic 

gravity wave in deep water is 

2rr 
-y;-z 

e cos (kt- mx) 

Calculate the maximum total force exerted on a vertical cylinder of 

five feet diameter by a wave H = 20 feet, T = 10 seconds. 
~ 

The d~ 

coefficient CD = 
2 

and L = .a_!_ 
2rr 

Answer: 

l, and the inertial coefficient CM = 2, k = 2rr 2rr 
T' m =-y;-

The drag force is maximum under the crest. The inertial 

force is maximum when the free surface elevation is at the still water 

level. The maximum total force at a given level occurs before the crest 

reaches the pile at a time which varies slightly with the vertical coor-

dinates z. The maximum total force on the pile is obtained by numeri-

cal integration. 
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